

Cryptographic e-Cash

Jan Camenisch

IBM Research – Zurich @JanCamenisch ibm.biz/jancamenisch

Requirements

- Anonymity: Withdrawal and Deposit must be unlinkable
- No Double Spending: Coin is bit-strings, can be spend twice

- Sign notes with digital signature scheme
 - -Note = (serial number #, value)
 - -Secure because
 - signature scheme can not be forged
 - bank will accepts some serial number only once → on-line e-cash
 - *Not* anonymous because (cf. paper solution)
 - bit-string of signature is unique
 - serial number is unique

- Use (more) cryptography
 - Hide serial number from bank when issuing
 - e.g., sign commitment of serial number
 - Reveal serial number and proof
 - knowledge of signature on
 - commitment to serial number
 - Anonymous because of commitments scheme and zero-knowledge proof

.... challenge is to do all this efficiently!

A set G with operation • is called a group if:

```
-closure

for all a,b, in G → a \square b in G

-commutativity

for all a,b, in G → a \square b = b \square a

-associativity

for all a,b,c, in G → (a \square b) \square c = a \square (b \square c)

-identity

there exist some e in G, s.t. for all a: a \square e = a

-invertibility

for all a in G, there exist a^{-1} in G: a \square a^{-1} = e
```

Example:

```
integers under addition (Z,+)=\{...,-2,-1,0,1,2,...\} or (Zn,+)=\{0,1,2,...,n-1\} identity: e=0 inverse: a^{-1}=-a
```


- exponentiation = repeated application of \cdot , e.g., $a^3 = a \cdot a \cdot a$
- a group is cyclic if every element is power of some fixed element:
 - -i.e., for each a in G, there is unique i such that $g^i = a$
 - -g = generator of the group
 - define $g^0 = 1 = identity element$

$$G = \langle g \rangle = \{1=g^0, g^1, g^2, ..., ., g^{q-1}\}$$

- -q = IGI= order of group
 if q is a prime number then G is cyclic
 - → computation in exponents can be done modulo q:

$$g^i = g^i \mod q$$

computing with exponents:

$$g^{i+j} = g^i \cdot g^j$$
 $g^{i-j} = g^i / g^j = g^i \cdot (g^j)^{-1}$ $g^{-i} = (g^{-1})^i = (g^i)^{-1}$

given g and x it is easy to compute g^x , $g^{1/x}$, given g^x and g^y it is easy to compute $g^x g^y = g^{x+y}$

Discrete Log Assumption

given g^x

it is hard to *compute* x

Diffie-Hellman Assumption

given g^x and g^y

it is hard to *compute* g^{xy}

Decisional Diffie-Hellman Assumption

given g^x , g^y , and g^z it is hard to *decide* if $g^z = g^{xy}$

May 30, 2016 Sign Corporation

Binding

Binding

Hiding: for all message m, m'

Hiding: for all message m, m'

Group $G = \langle g \rangle = \langle h \rangle$ of order q

To commit to element $\times \in \mathbb{Z}_q$:

- Pedersen: perfectly hiding, computationally binding choose r ∈ Z_q and compute c = g[×]h^r
- ElGamal: computationally hiding, perfectly binding: choose $\mathbf{r} \in \mathbf{Z}_q$ and compute $c = (g^{\mathbf{x}}h^{\mathbf{r}}, g^{\mathbf{r}})$

To open commitment:

- reveal x and r to verifier
- verifier checks if $c = g^{\times}h^{\Gamma}$

Pedersen's Scheme:

Choose $r \in Z_q$ and compute $c = g^x h^r$

Perfectly hiding:

Let c be a commitment and $u = log_q h$

Thus
$$c = g^{x}h^{r} = g^{x+ur} = g^{(x+ur')+u(r-r')}$$

= $g^{x+ur'}h^{r-r'}$ for any r'!

I.e., given c and x' here exist r' such that $c = g^{x'}h^{r'}$

Computationally binding:

Let c, (x', r') and (x, r) s.t. $c = g^{x'}h^{r'} = g^{x}h^{r}$ Then $g^{x'-x} = h^{r-r'}$ and $u = log_q h = (x'-x)/(r-r') \mod q$

Proof of Knowledge of Contents

Proof of Relations among Contents

May 30, 2016 Sign Corporation

Let $C1 = g^{m}h^{r}$ and $C' = g^{m'}h^{r}$ then:

$$PK\{(\alpha,\beta): C = g^{\beta}h^{\alpha}\}$$

$$\frac{m, m'}{m = 2 \cdot m'} \xrightarrow{\text{true}}$$

$$PK\{(\alpha,\beta,\gamma): C' = g^{\beta}h^{\alpha} \wedge C = (g^{2})^{\beta}h^{\gamma}\}$$

interactive proof between a prover and a verifier about the prover's knowledge

properties:

zero-knowledge

verifier learns nothing about the prover's secret

proof of knowledge (soundness)

prover can convince verifier only if she knows the secret

completeness

if prover knows the secret she can always convince the verifier

Given group $\langle g \rangle$ and element y $\mathcal{E} \langle g \rangle$.

Prover wants to convince verifier that she $knows \times s.t. y = g^{\times}$ such that verifier only learns y and g.

Prover:

Verifier:

random r

$$t := g^r$$
 c

random c

$$s := r - cx$$

$$+ = q^s y^c?$$

notation: $PK\{(a): y = g^a\}$

Proof of Knowledge Property:

If prover is successful with non-negl. probability, then she "knows" $x = \log g \gamma$, i.e., ones can extract x from her.

Assume $c \in \{0,1\}^{k}$ and consider execution tree:

If success probability for any prover (including malicious ones)

is $>2^{-k}$ then there are two *accepting* tuples (t,c1,s1) and (t,c2,s2) for the same t.

Prover might do protocol computation in any way it wants & we cannot analyse code.

Thought experiment:

- Assume we have prover as a black box → we can reset and rerun prover
- Need to show how secret can be extracted via protocol interface

Zero-knowledge property:

If verifier does not learn anything (except the fact that Alice knows $x = \log g y$) Idea: One can simulate whatever Bob "sees".

Choose random
$$c'$$
, s'
compute $t := g^{s'} y^{c'}$

if $c = c'$ send $s' = s$,
otherwise restart

Problem: if domain of c too large, success probability becomes too small

One way to modify protocol to get large domain c:

Prover:

Verifier:

random r

$$t := g^r$$

 $h := H(c,v)$
 $h := H(c,v)$?
 $s := r - cx$
 $t := g^s y^c$?

notation: $PK\{(a): y = g^a\}$

One way to modify protocol to get large domain c:

after having received c "reboot" verifier

Choose random s compute $t := g^s y^c$ send s

Signature SPK $\{(a): y = g^a\}(m):$

Signing a message m:

- chose random $r \in Z_q$ and
- compute $c := H(g^r || m) = H(t || m)$ $s := r - cx \mod (q)$
- output (c,s)

Verifying a signature (c,s) on a message m:

- check
$$c = H(g^s y^c || m)$$
? \Leftrightarrow $t = g^s y^c$?

Security:

- underlying protocol is zero-knowledge proof of knowledge
- hash function H(.) behaves as a "random oracle."

Many Exponents:

$$PK\{(\alpha,\beta,\gamma,\delta): y = g^{\alpha} h^{\beta} z^{\gamma} k^{\delta} u^{\beta} \}$$

Logical combinations:

PK{
$$(\alpha,\beta)$$
: $y = g^{\alpha} \wedge z = g^{\beta} \wedge u = g^{\beta}h^{\alpha}$ }
PK{ (α,β) : $y = g^{\alpha} \vee z = g^{\beta}$ }

Intervals and groups of different order (under SRSA):

PK{(a):
$$y = g^a \land a \in [A,B]$$
}
PK{(a): $y = g^a \land z = g^a \land a \in [0,min\{ord(g),ord(g)\}]$ }

Non-interactive (Fiat-Shamir heuristic, Schnorr Signatures):

$$PK\{(a): y = g^{a}\}(m)$$

Let g, h, C1, C2, C3 be group elements.

Now, what does

PK{(a1,
$$\beta$$
1,a2, β 2, a3, β 3): C1= $g^{a1}h^{\beta 1} \wedge C2 = g^{a2}h^{\beta 2} \wedge C3 = g^{a3}h^{\beta 3} \wedge C3 = g^{a1}g^{a2}h^{\beta 3}$ } mean?

 \rightarrow Prover knows values a1, β 1, a2, β 2, β 3 such that

$$C1 = g^{a1}h^{\beta 1}$$
, $C2 = g^{a2}h^{\beta 2}$ and $C3 = g^{a1}g^{a2}h^{\beta 3} = g^{a1} + a^{2}h^{\beta 3} = g^{a3}h^{\beta 3}$ and $a3 = a1 + a2 \pmod{q}$

And what about:

$$PK\{(a1,...,\beta3): C1=g^{a1}h^{\beta1} \land C2=g^{a2}h^{\beta2} \land C3=g^{a3}h^{\beta3} \land C3=g^{a1}(g^5)^{a2}h^{\beta3}\}$$

$$\Rightarrow C3 = g^{a1}g^{a2}h^{\beta 3} = g^{a1 + 5 a2}h^{\beta 3}$$

$$a3 = a1 + 5 a2 \pmod{q}$$

© 2016 IBM Corporation

Let g, h, C1, C2, C3 be group elements.

Now, what does

$$PK\{(a1,...,\beta3): C1=g^{a1}h^{\beta1} \land C2=g^{a2}h^{\beta2} \land C3=g^{a3}h^{\beta3} \land C3=C2^{a1}h^{\beta3}\}$$
 mean?

 \rightarrow Prover knows values a1, β 1, a2, β 2, β 3 such that

$$C1 = g^{a1}h^{\beta 1}$$
, $C2 = g^{a2}h^{\beta 2}$ and $C3 = C2^{a1}h^{\beta 3} = (g^{a2}h^{\beta 2})^{a1}h^{\beta 3} = g^{a2\cdot a1}h^{\beta 3+\beta 2\cdot a1}$
 $C3 = g^{a2\cdot a1}h^{\beta 3+\beta 2\cdot a1} = g^{a3}h^{\beta 3'}$
 $a3 = a1 \cdot a2 \pmod{q}$

And what about

PK{(a1,\beta1,\beta2):
$$C1 = g^{a1}h^{b1} \wedge C2 = g^{a2}h^{b2} \wedge C2 = C1^{a1}h^{b2}$$
}

$$\rightarrow$$
 a2 = a1² (mod q)

Let g, h, C1, C2, C3 be group elements.

Now, what does

$$PK\{(a1,..,\beta2): C1=g^{a1}h^{\beta1} \wedge C2=g^{a2}h^{\beta2} \wedge g=(C2/C1)^{a1}h^{\beta2}\}$$
 mean?

→ Prover knows values a, β1, β2 such that

$$C1 = g^{a1}h^{\beta 1}$$

$$g = (C2/C1)^{a1}h^{\beta 2} = (C2 g^{-a1}h^{-\beta 1})^{a1} h^{\beta 2}$$

$$g^{1/a1} = C2 g^{-a1}h^{-\beta 1} h^{\beta 2/a1}$$

$$C2 = g^{a1} h^{\beta 1} h^{-\beta 2/a1} g^{1/a1} = g^{a1 + 1/a1} h^{\beta 1 - \beta 2/a1}$$

$$C2 = g^{a2} h^{\beta 2}$$

$$a2 = a1 + a1^{-1} \pmod{q}$$

Key Generation

$$\sigma = sig((m_1,..., m_k)^{\circ})$$

$$ver(\sigma,(m_1,...,m_k))$$
) = true

$$\sigma = sig((m_1,..., m_k)^{2})$$

Unforgeability under Adaptive Chosen Message Attack

m1

Unforgeability under Adaptive
Chosen Message Attack

m1

σ1

 σ

m

Unforgeability under Adaptive Chosen Message Attack

 σ' and $m' \neq m_i$ s.t. $ver(\sigma', m', ?) = true$

Verification remains unchanged! Security requirements basically the same, but

- Signer should not learn any information about m1, ..., mj
- Forgery w.r.t. message clear parts and opening of commitments

May 30, 2016

May 30, 2016 September 2016 IBM Corporation

Variation:

- Send also no to verifier and
- Prove that committed messages are signed
- Prove properties about hidden/committed mi

can be used multiple times

Damgaard, Camenisch & Lysyanskaya Strong RSA, DL-ECC,...

can be used only once

Chaum, Brands, et al.

Discrete Logs, RSA,...

Rivest, Shamir, and Adlemann 1978

Secret Key: two random primes p and q

Public Key: n := pq, prime e,

and collision-free hash function

$$H: \{0,1\}^* \rightarrow \{0,1\}^{\ell}$$

Computing signature on a message $m \in \{0,1\}^*$

$$d := 1/e \mod (p-1)(q-1)$$

$$s := H(m)^{d} \mod n$$

$$s^e = H(m) \pmod{n}$$

Correctness:
$$s^e = (H(m)^d)^e = H(m)^{d \cdot e} = H(m) \pmod{n}$$

Verification signature on a message $m \in \{0,1\}^*$

$$s^e := H(m) \pmod{n}$$

Wanna do proof of knowledge of signature on a message, e.g.,

$$PK\{ (m,s): s^e = H(m) \pmod{n} \}$$

But this is not a valid proof expression!!!! :-(

Public key of signer: RSA modulus n and a_i , b, d $\in QR_n$,

Secret key: factors of n

To sign k messages m1, ..., mk $\in \{0,1\}^{\ell}$:

- choose random prime $2^{\ell+2} > e > 2^{\ell+1}$ and integer $s \approx n$
- compute c:

$$c = (d / (a_1^{m1} \cdot ... \cdot a_k^{mk} b^s))^{1/e} \mod n$$

signature is (c,e,s)

To verify a signature (c,e,s) on messages m1, ..., mk:

- m1, ..., mk $\in \{0,1\}^{\ell}$:
- e > 2^{l+1}
- $d = c^e a_1^{m1} \cdot ... \cdot a_k^{mk} b^s \mod n$

Theorem: Signature scheme is secure against adaptively chosen message attacks under Strong RSA assumption.

$$C = a_1^{m1} a_2^{m2} b^{s'}$$

$$C + PK\{(m1, m2, s'): C = a_1^{m1} a_2^{m2} b^{s'}\}$$

Choose e,s"

$$c = (d/(C a_3^{m3} b^{s''}))^{1/e} \mod n$$

$$d = c^e a_1^{m1} a_2^{m2} a_3^{m3} b^{s'+s''} \mod n$$

Recall: $d = c^e a1^{m1}a2^{m2}b^s \mod n$

Observe:

- Let c' = c b[†]mod n with randomly chosen †
- Then $d = c'^e a1^{m1}a2^{m2} b^{s-et}$ (mod n), i.e., (c',e, s* = s-et) is also signature on m1 and m2

To prove knowledge of signature (c',e, s*) on m2 and some m1

- provide c'
- $PK\{(ε, μ1, σ): d/a2^{m2} := c'^ε a1^{μ1} b^σ ∧ μ ∈ {0,1}^ℓ ∧ ε > 2^{ℓ+1}\}$
- \rightarrow proves d := c'^{ϵ} $a1^{\mu 1}$ $a2^{m2}$ b^{σ}

55

- Issue coin: Hide serial number from bank when issuing
 - sign commitment of random serial number
- Spend coin: reveal serial number and proof
 - knowledge of signature on
 - commitment to serial number

Choose e,s"

 $c = (d/(C b^{s''}))^{1/e} \mod n$

C* Proof

choose random #, s' and compute

$$C = a_1^{\#} b^{s'}$$

$$(c,e,s''+s')$$
 s.t.
 $d = c^e a_1^{\#} b^{s''+s'} \pmod{n}$

$$(c,e,s"+s')$$
 s.t.
 $d = c^e a_1^{\#} b^{s"+s'} \pmod{n}$

May 30, 2016 Sign Corporation

$$(c,e,s''+s')$$
 s.t.
 $d = c^e a_1^\# b^{s''+s'} \pmod{n}$

ε L?

OK/ not OK

compute

 $c' = c b^s \mod n$
 $proof = PK\{(\epsilon, \mu, \rho, \sigma) : d / a_1^\# = c'^\epsilon b^\sigma \pmod{n} \}$

May 30, 2016

- Anonymity
 - Bank does not learn # during withdrawal
 - Bank & Shop do not learn c, e when spending

Double Spending:

■ Spending = Compute

```
-c' = c b^{s'} \mod n

-proof = PK\{(\epsilon, \mu, \rho, \sigma): d / a_1^{\#} = c'^{\epsilon} b^{\sigma} \pmod n \}
```

- Can use the same # only once....
 - If more #'s are presented than withdrawals:
 - Proofs would not sound
 - Signature scheme would not secure

On-Line Solution:

- 1. Coin = random serial # (chosen by user) signed by Bank
- 2. Banks signs blindly
- 3. Spending by sending # and prove knowledge of signature to Merchant
- 4. Merchant checks validy w/ Bank
- 5. Bank accepts each serial # only once.

Off-Line:

- Can check serial # only after the fact
- ... but at that point user will have been disappeared...

Goal:

-spending coin once: OK

-spending coin twice: anonymity revoked

Seems like a paradox, but crypto is all about solving paradoxical problems :-)

Main Idea:

- -Include #, id, r
- -Upon spending:

reveal #, and \dagger = id + r u,

with c randomly chosen by merchant

- † won't reveal anything about id!
- -However, given two equations (for the same #, id, r)

```
t1 = id + ru1
```

t2 = id + ru2

one can solve for id.

choose random #, r, s'

and compute

$$C = a_1^{\#} a_2^{r} b^{s'}$$

$$d = c^e C a_3^{nym} b^{s''} \mod n$$

$$(c,e,s''+s')$$
 s.t.
 $d = c^e a_1^{\#} a_2^r a_3^{nym} b^{s''+s'}$ (mod n)

Let $G=\langle g \rangle$ be a group of order q

$$(c,e,s''+s')$$
 s.t.
 $d = c^e a_1^{\#} a_2^{r} a_3^{nym} b^{s''+s'}$ (mod n)

compute

$$t = r + u \text{ nym mod } q$$

$$c' = c b^{s'} \text{mod } n$$

$$proof = PK\{(\epsilon, \mu, \rho, \sigma) : r \in S \}$$

$$d / a_1^{\#} = c'^{\epsilon} a_2^{\rho} a_3^{\mu} b^{\sigma} \pmod{n} \wedge g^{\dagger} = g^{\rho} (g^{u})^{\mu}$$

choose random u

```
PK{(\epsilon, \mu, \rho, \sigma):

d / a_1^{\#} = c'^{\epsilon} a_2^{\rho} a_3^{\mu} b^{\sigma} \pmod{n} \wedge g^{\dagger} = g^{\rho} (g^{u})^{\mu}}
```

1.
$$d = c'^{\epsilon} a_1^{\#} a_2^{\rho} a_3^{\mu} b^{\sigma} \pmod{n}$$

 $\Rightarrow (c', \epsilon, \sigma) \text{ is a signature on } (\#, \mu, \rho)$

```
2. g^{\dagger} = g^{\rho + u\mu}
=> t = \rho + u\mu \mod q,
i.e., t was computed correctly!
```


ϵ L? 1. $t = \rho + u \mu \pmod{q}$ If so: 2. $t' = p + u' \mu \pmod{q}$ solve for ρ and μ . $\Rightarrow \mu = \text{nym}$ because of proof u, t, #, proof

Unforgeable:

- -no more coins than #'s,
 - otherwise one can forge signatures
 - or proofs are not sound
- -if coins with same # appears with different u's => reveals nym

Anonymity:

- -# and r are hidden from signer upon withdrawal
- -t does not reveal anything about nym (is blinded by r)
- -proof proof does not reveal anything

e-Cash

- K-spendable cash
 - Multiple serial numbers and randomizers per coin
 - Use PRF to generate serial number and randomizers from seed in coin
- Money laundering preventions
 - Must not spend more that \$10000 dollars with same party
 - Essentially use additional coin defined per merchant that controls this

Other protocols from these building blocks, essentially anything with authentication and privacy

Anonymous credentials, eVoting,

Alternative building blocks

- A number of signatures scheme that fit the same bill
- (Verifiable) encryption schemes that work along as well
- Alternative framework: Groth-Sahai proofs plus "structure-preserving" schemes

PhD and Postdocs available at IBM Research – Zurich Please contact me

May 30, 2016 Sign Corporation

Thank you!

- eMail: identity@zurich.ibm.com
- Links:
 - www.abc4trust.eu
 - www.futureID.eu
 - www.au2eu.eu
 - www.PrimeLife.eu
 - www.zurich.ibm.com/idemix
 - idemixdemo.zurich.ibm.com
- Code
 - github.com/p2abcengine & abc4trust.eu/idemix

References

- D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In EUROCRYPT '87, vol. 304 of LNCS, pp. 127–141. Springer-Verlag, 1988.
- S. Brands. *Rapid demonstration of linear relations connected by boolean operators*.In EUROCRYPT '97, vol. 1233 of LNCS, pp. 318–333. Springer Verlag, 1997.
- Mihir Bellare: Computational Number Theory http://www-cse.ucsd.edu/~mihir/cse207/w-cnt.pdf
- Camenisch, Lysanskaya: Dynamic Accumulators and Applications to Efficient Revocation of Anonymous Credentials. Crypto 2002, Lecture Notes in Computer Science, Springer Verlag.
- Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in Computer Science, Springer Verlag.
- Jan Camenisch, Natalie Casati, Thomas Gross, Victor Shoup: Credential Authenticated Identification and Key Exchange.
 CRYPTO 2010:255-276
- Jan Camenisch, Maria Dubovitskaya, Gregory Neven: Oblivious transfer with access control. ACM Conference on Computer and Communications Security 2009: 131-140
- Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in Computer Science, Springer Verlag.
- M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko: The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme. Journal of Cryptology, Volume 16, Number 3. Pages 185 -215, Springer-Verlag, 2003.
- E. Bangerter, J. Camenisch and A. Lyskanskaya: A Cryptographic Framework for the Controlled Release Of Certified Data. In Twelfth International Workshop on Security Protocols 2004. www.zurich.ibm.com/~jca/publications
- Stefan Brands: Untraceable Off-line Cash in Wallets With Observers: In Advances in Cryptology CRYPTO '93. Springer Verlag, 1993.

References

- J. Camenisch and A. Lyskanskaya: Efficient Non-transferable Anonymous Multi-show Credential System with Optional Anonymity Revocation. www.zurich.ibm.com/~jca/publications
- David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM, Vol. 24
 No. 2, pp. 84—88, 1981.
- David Chaum: Blind Signatures for Untraceable Payments. In Advances in Cryptology Proceedings of CRYPTO '82, 1983.
- David Chaum: Security Without Identification: Transaction Systems to Make Big Brother obsolete: in Communications of the ACM, Vol. 28 No. 10, 1985.
- Camenisch, Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. CRYPTO 2003: 126-144
- Victor Shoup: A computational introduction to Number Theory and Algebra. Available from: http://www.shoup.net/ntb/
- D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM.
- D. Chaum: *The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability.* Journal of Cryptology, 1988.
- J. Camenisch and V. Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In Advances in Cryptology -CRYPTO 2003.
- T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Advances in Cryptology -CRYPTO '84.