
Bitcoin overview

Lesson 1

Joseph Bonneau

This lecture

● Crypto background
○ hash functions
○ digital signatures

● Intro to cryptocurrencies
○ basic ledger-based cryptocurrency
○ sybils and 51% attacks

Lecture 1.1:

Cryptographic Hash Functions

● Hash function:
○ Deterministic function H: {0,1}*→{0,1}k

○ Accepts ~any string as input
○ fixed-size output (we’ll use k=256 bits)
○ efficiently computable

● Security properties:
○ collision-free
○ one-way
○ puzzle-friendly (we’ll define this more later)

Hash property 1: Collision-free

Nobody can find x and y such that
x != y and H(x)=H(y)

x

y

H(x) = H(y)

Collisions exist ...

possible inputs

possible outputs

… but can anyone find them?

Birthday attack on any 256-bit hash H:

1. try 2130 randomly chosen inputs
2. >99.8% chance that two of them will collide

This works no matter what H is
… but it takes too long to matter

There are faster ways to find collisions for some H
○ MD5 (collisions found)
○ SHA-1 (near-collisions found)

Others are currently collision-resistant:
○ SHA-256 (used heavily Bitcoin and others)
○ SHA-3 (used in Ethereum)

Merkle-Dåmgard construction (SHA-256)

256 bits 256 bits

512 bits

Theorem: If c is collision-free, then the hash is collision-resistant

Padding (10* | length)

IV

Message
(block 1)

Message
(block 2)

Message
(block n)

output
c c c

Sponge construction (SHA-3)

Theorem: If f is a PRP, then the hash is collision-resistant

Application: Hash as message digest

If we know H(x) = H(y) we assume that x = y.

Instead of storing x, store H(x)

Can fetch x from untrusted source and verify H(x)

Hash property #2: one-wayness
We want something like this:

“Given H(x), it is infeasible to find x”

But this breaks down if we know information about x:

H(“heads”)

H(“tails”)

easy to find x!

Hash property 2’: Hiding

If r is chosen from a probability distribution that has high
min-entropy, then given H(r | x), it is infeasible to find x.

 commit(x) := H(r | x)
 verify(com, r, x) := H(r | x) == com

High min-entropy means that the distribution has no
particular value with probability above some low limit

Lecture 1.2:

Hash pointers and authenticated data structures

Key idea:

1. Take any pointer-based data structure
2. Replace pointers with cryptographic hashes

We now have an authenticated data structure

(data)

H()

Hash pointers

Blockchain: Linked list with hash pointers

data

prev: H()

data

prev: H()

data

prev: H()

H()

use case: tamper-evident log

Modifications to any block will propagate forever

data

prev: H()

data

prev: H()

data

prev: H()

H()

Theorem:
chains with same hash, different data → collision

data

prev: H()

data

prev: H()

data

prev: H()

data

prev: H()

data

prev: H()

data

prev: H()

x

Merkle tree: binary tree with hash pointers

H() H()

H() H() H() H()

H() H() H() H() H() H() H() H()

(data) (data) (data) (data) (data) (data) (data) (data)

proving membership in a Merkle tree

show O(log n) neighbors

H() H()

H() H() H() H()

H() H() H() H()

(data) (data)

Comparison
Blockchain Merkle tree

Abstraction list set

Commitment size O(1) O(1)

Append O(1) O(lg n)

Update O(n) O(lg n)

Membership proof O(n) O(lg n)

Can we do better?

Patricia tree/radix tree/trie

● Hash-pointer version of a radix trie
● Implements a {0,1}*→{0,1}* map
● O(lg n) proofs, storage

Used in Ethereum, not Bitcoin...

Generalizing the concept

can use hash pointers in any pointer-based DAG

General libraries exist (GPADS)

Lecture 1.3:

Digital Signatures

Digital signatures 101

(sk, pk) := genKey(keysize)
sk: secret signing key

pk: public verification key

sig := sign(sk, message)

isValid := verify(pk, message, sig)

can be
randomized
algorithms

Requirements for signatures

correctness
sk, pk = genKey(keysize) →
verify(pk, message, sign(sk, message)) == true

unforgeability (EUF-CMA security)
adversary given pk

adaptively may query sign(mi) oracle

cannot output a valid signature pair (σ, m’) for any new message m’

Bitcoin uses ECDSA
○ Elliptic Curve Digital Signature Algorithm
○ curve used is secp256k1
○ set of points (x,y) ∊ Fp❌ Fp

 | y2 = x3 + 7
○ p = 2256 - 232 - 29 - 28 - 27 - 26 - 24 - 1
○ Forms a group E, |E| = q ≈ p ≈ 2256

range format size (bits)

sk Zq random 256

pk E sk ∙ G 512/257*

m Zq H(message) 256

sig Zq ❌ Zq (r, s) 512

The airing of ECDSA grievances

Problem Remedies

re-using randomness leaks sk use PRF(m) as randomness (or use BLS)

malleable normalization (or use BLS)

not threshold friendly complex SMPC, EC-Schnorr, BLS, RSA

not quantum safe Hash-based sigs, lattice-based crypto

Useful convention public key == identity

● Anybody can get an identity with genKey
○ Collisions statistically negligible

● To “speak” as pk, sign using sk

● Keys are pseudonyms

Addresses in Bitcoin

● Address = H(pk) (usually)

● Hashed, converted to base56:

1BvBMSEYstWetqTFn5Au4m4GFg7xJaNVN2
1JBonneauruSSoYm6rH7XFZc6Hcy98zRZz

Lecture 1.4:

Simple cryptocurrencies

Obvious approach

1. Use public keys as addresses
2. Sign to authorize transfer to new address

New coins created [somehow]

GoofyCoin

Goofy can create new coins

CreateCoin [uniqueCoinID]

signed by pkGoofy

New coins belong to me.

A coin’s owner can spend it.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Alice owns it now.

The recipient can pass on the coin again.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice
Bob owns it now.

CreateCoin [uniqueCoinID]

signed by pkGoofy

Pay to pkAlice : H()

signed by pkGoofy

Pay to pkBob : H()

signed by pkAlice

Pay to pkCarol: H()

signed by pkAlice

double-spending attack

Double-spends must be prevented

Alice

Bob

Carol

X
1
 = Sign

Bank
(Transfer X

0
 to Alice)

X
2
 = Sign

Alice
(Transfer X

1
 to Bob)

X’
2
 = Sign

Alice
(Transfer X

1
 to Carol)

BANK

Traditional approach: talk to the issuer

Alice

Bob
X

1
 = Sign

Bank
(Transfer X

0
 to Alice)

X
2
 = Sign

Alice
(Transfer X

1
 to Bob)

BANK Has X
1
 been spent yet?

X
1

Bitcoin’s approach: global ledger

Transfer X1
Carol→Dave

prev: H()

Transfer X1
Bob→Carol

prev: H()

Transfer X1
Alice→Bob

prev: H()
transID: 73transID: 72transID: 71

H()

Globally
tracked

“The Blockchain”

Lecture 1.5:

Transaction semantics

Bitcoins are immutable

“Coins” aren’t transferred, subdivided, or combined

Transactions destroy old “coins”, create new ones
● easily replicate division via change addresses

A transaction-based ledger (Bitcoin)

Create: #1 to Alice (25 coins)

Input: #1

Output: #2 to Bob (17), #3 to Alice (8)
SIGNED(ALICE)

OPTIMIZATION: Store all valid UTXOs

time

is this valid?

Input: #2

Output: #4 to Charlie (8), #5 to Bob (9)
SIGNED(BOB)

Input: #3

Output: #6 to David (16), #7 to Alice (2)
SIGNED(ALICE)

follow the
hash pointers

A change address

Merging value

Input: #1

Output: #2 to Bob (17), #3 to Alice (8)
SIGNED(ALICE)

time

Input: #3

Output: #4 to Charlie (6), #5 to Bob (2)
SIGNED(CHARLIE)

Input: #2, #5

Output: #6 to Bob (19)
SIGNED(BOB)

...

...

Joint payments

Input: #1

Output: #2 to Bob (17), #3 to Alice (8)
SIGNED(ALICE)

time

Input: #2

Output: #4 to Charlie (8), #5 to Bob (9)
SIGNED(CHARLIE)

Input: #2, #4

Output: #6 to Bob (26)
SIGNED(BOB), SIGNED(CHARLIE)

...

...

two signatures!

A real Bitcoin transaction
{
 "hash":"5a42590fbe0a90ee8e8747244d6c84f0db1a3a24e8f1b95b10c9e050990b8b6b",
 "ver":1,
 "vin_sz":2,
 "vout_sz":1,
 "lock_time":0,
 "size":404,
 "in":[
 {
 "prev_out":{
 "hash":"3be4ac9728a0823cf5e2deb2e86fc0bd2aa503a91d307b42ba76117d79280260",
 "n":0
 },

"scriptSig":"30440....3f3a4ce81"
 },
 {
 "prev_out":{
 "hash":"7508e6ab259b4df0fd5147bab0c949d81473db4518f81afc5c3f52f91ff6b34e",
 "n":0
 },
 "scriptSig":"304602210....3f3a4ce81"
 }
],
 "out":[
 {
 "value":"10.12287097",
 "scriptPubKey":"OP_DUP OP_HASH160 69e02e18b5705a05dd6b28ed517716c894b3d42e OP_EQUALVERIFY OP_CHECKSIG"
 }
]

}

input(s)

metadata

output(s)

Transaction inputs ransaction inputs
 "in":[
 {
 "prev_out":{
 "hash":"3be4...80260",
 "n":0
 },

"scriptSig":"30440....3f3a4ce81"
 },
 ...

],

signature

previous
transaction

(more inputs)

Transaction outputs
 "out":[

 {

 "value":"10.12287097",

 "scriptPubKey":"OP_DUP OP_HASH160 69e...3d42e
OP_EQUALVERIFY OP_CHECKSIG"

 },

 ...

]

output value

Why are
addresses a
script??

(more outputs)

output address

Output “addresses” are really scripts

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

Input “addresses” are also scripts

OP_DUP
OP_HASH160
69e02e18...
OP_EQUALVERIFY OP_CHECKSIG

30440220...
0467d2c9...

scriptSig

scriptPubKey

TO VERIFY: Concatenated script must execute completely with no errors

Bitcoin scripting language (“Script”)

Design goals
● Built for Bitcoin (inspired by Forth)
● Stack-based
● Simple, finite
● No looping
● Support for cryptography

○ MULTISIG addresses

image via Jessie St. Amand

I am not impressed

Lecture 1.6:

Centralized ledger (ScroogeCoin)

trans

prev: H()

trans

prev: H()

trans

prev: H()

H()
Scrooge publishes ledger of all transactions

(a blockchain, signed by Scrooge)
signed by pkScrooge

Merkle tree of transactions
in each block

Don’t worry, I’m honest.

What if Scrooge is malicious?

input:
x[0]

Output:
0: 45.3➝a

prev: H()

prev: H()

input:
w[0]

Output:
0: 45.3

prev: H()

H()
transID: z

transID: ytransID: x

signed by
pkScrooge

Forking

input:
x[0]

Output:
0: 45.3➝b

prev: H()

H()transID: z’

signed by
pkScrooge

double-spending attack

Other Scrooge problems

● Blacklist addresses
● Demand transaction fees
● Go offline
● Get hacked

Decentralization

Can we avoid vulnerability to misbehavior by one entity?

Lecture 1.7:

Decentralized ledger: Bitcoin

Bitcoin is a peer-to-peer system

When Alice wants to pay Bob:
she broadcasts the transaction to all Bitcoin nodes

Pay to pkBob : H()
signed by Alice

All nodes must agree on a sequence of transactions

Bitcoin consensus (simplified)

1. Transactions are broadcast to all nodes

2. In each round a random* node signs a block of new
transactions, including the hash of the previous block

3. Other nodes accept the block if all transactions are valid

4. Invalid blocks are ignored, next node repeats this block

5. Longest chain is considered canonical

Leads to a valid canonical chain with “honest majority”

What can a malicious node do?

CA → B

CA → A’

Pay to pkB : H()
signed by A

Pay to pkA’ : H()
signed by A

Double-spend

Honest nodes will extend the longest valid branch

From a merchant’s point of view

CA → B

CA → A’

Hear about CA → B transaction
0 confirmations

1 confirmation

double-spend
attempt

3 confirmations

Double-spend probability
decreases exponentially
with # of confirmations

Most common heuristic:
6 confirmations

Basic properties

Protection against invalid transactions is cryptographic

Protection against double-spending relies on consensus

You’re never 100% sure a transaction is in the blockchain

Honest majority of whom?

Recall: addresses can be freely created

Solution: “vote” by CPU power

Bitcoin mining puzzle:

Given previous block prev, new block curr:

Find n such that H(prev|curr|n) < 2256-d

d is a difficulty parameter

First solution wins

SHA-256 is “puzzle-friendly”

Optimization-free
No better strategy than trying random nonces

Progress-free
You don’t get any closer the more work you do

Parameterizable
Easy to adjust difficulty

Time to solution is probabilistic

Time to next block (entire network)

Pr
ob

ab
ili

ty
 d

en
si

ty

10
minutes

Miners are rewarded for solutions

Creator of block gets to
• include special coin-creation transaction in the block
• choose recipient address of this transaction

“Block reward” currently 25 BTC, halves every 4 years

Transaction fees also kept

Rewarded only if block is on eventual consensus branch!

There’s a finite supply of bitcoins

Block reward is how
new bitcoins are created

Runs out in 2040. No new
bitcoins unless rules change

Year

To
ta

l
bi

tc
oi

ns
 i
n

ci
rc

ul
at

io
n

First inflection point:
reward halved from 50BTC to 25BTC

Total supply: 21 million

Recap
Bitcoins created by special mining transactions

Bitcoins owned by public keys (addresses)

Bitcoin transfers authorized by digital signatures

Blockchain records all transfers, prevents double spends

Miners extend blockchain by solving proof of work

Miners rewarded by creating new bitcoins

Claims about Bitcoin

“Solves Byzantine agreement”

“Secure if 51% of hash power is honest”

“Secure if everybody follows their incentives”

“Really interesting”

FALSE

Depends on definition of “secure”

Nobody really knows

Hopefully

For more high-level background

Bitcoins and cryptocurrency technologies.

Narayanan, Bonneau, Felten, Miller, Goldfeder

