
Scaling Bitcoin Securely

Aggelos Kiayias
University of Edinburgh

based on joint work with Juan Garay,  
Nikos Leonardos, Giorgos Panagiotakos

Analyzing the Bitcoin
Protocol

• Nakamoto : adversary vs. honest player working on a
chain perform a random walk.

• Assuming honest-majority the adversary cannot
“catch” the honest players.

• Nakamoto’s analysis can be easily seen to be limited:

• the adversary can be more creative than just mining
in private until he obtains a longer chain. E.g., it can
broadcast conflicting chains to different sets of
honest miners in order to split their mining power.

The Bitcoin Backbone : analysis
and applications

• Formal model.
• Instead of arguing security against specific attacks 
argue security against all possible attackers in the model.

•State general properties that should be satisfied. 

• The bitcoin backbone : 
the generic blockchain protocol derived from bitcoin

[Eurocrypt 2015, joint work with J. Garay, N. Leonardos]

GKL Model
• A general framework for arguing formally about

bitcoin-like protocols.

• in the tradition of synchronous distributed systems
modeling.

• Stand alone, synchronous execution.

• Static number of parties.

• Extensible to the dynamic / composition setting.

The model : q-bounded
synchronous setting

• Synchronous operation: time is divided in rounds.

•In each round  
each player is allowed q queries to a hash function

• messages are sent through a diffusion mechanism

n parties, t of which controlled by the adversary.

• Adversary may : 
1. spoof messages  
2. generate arbitrary number of messages

Round structure

Env

Adv

broadcast

end of round i beginning of round i+1

Env

Adv

input

Hash Hash

q queries

users

⇧⇧ ⇧ ⇧ ⇧ ⇧

rushing

output

On the generality of the
model

• We quantify over all possible adversaries.

Adv Adv

This includes

⇧⇧

some parties
receiving only some

of the messages

a large mining pool
that is performing

some type of selfish
mining

Or any combination thereof

⇧0

On the generality of the
model

• There are n-t honest parties each one receiving q
queries to the hash function per round.

• The adversary is able to control t parties acting as a
malicious mining pool.

• A “flat” version of the world in terms of hashing
power.

• It is worse for honest parties to be separated (they
have to pay the price of being decentralized).

Modeling the hash function

• Hash Function = [Random oracle]

• State = Table T

• Given any query x look up T for pair of the form (x,y)

• If it does not exist sample y from {0,1}^λ and store
(x,y) to T

• Return y

λ = security parameter

Execution & View
⇧protocol
Aadversary

environment Z

VIEW⇧
A,Z(1

�) concatenation of the  
view of each party at each round

n parties

random variable with support :  
1. coins of
2. Random oracle

A,Z, n copies of ⇧

3 PPT machines

Property of a protocol

⇧a protocol
a number of parties n, t of which 
 controlled by adversary

fix

We say that the protocol has property

a predicate

if and only if

8A 8Z Prob[Q(VIEW⇧
A,Z(1

�)] � 1� ✏

✏ = negl(�)

Q

Q

with error

typically :

✏

Sanity check: why use the
bitcoin protocol?

hence known consensus
algorithms

cannot be applied

•No authentication
infrastructure n,t are unknown

Classical results in distributed systems :

Lamport, Shostak Pease ‘80

Sanity check: why use the
bitcoin protocol?

hence “secure MPC”
cannot be applied

•No authentication
infrastructure n,t are unknown

Classical results in cryptography :

Goldreich Micali Wigderson 1987
any function can be securely computed
by n parties.
Is this applicable to the bitcoin setting ?

Precursors from a
consensus point of view

• Aspnes-Jackson-Krishnamourthy 2005. Suggest use of
POW to establish PKI (from which one may obtain
broadcast (the byzantine generals) and then
consensus)

• Okun 2005. Defines anonymous consensus (but no
POW - no efficient algorithm).

Bitcoin Backbone

• A precise algorithmic description of the core of the
bitcoin protocol that isolates its consensus
characteristics in a precise manner (while it abstracts
away the transactional aspects)

The Bitcoin Backbone (1)

• players have a state in the form of a “blockchain”:

parameterized by

C

H()

xi
G()G()

sisi�1

xi�1
ctr ctr

satisfies the predicateC

and G(·), H(·) hash functions

...

V (·), I(·), R(·)

V (C) = true

< D

The Bitcoin Backbone (2)

• Within a round, players obtain (INSERT, x) symbols from
the environment and network and process them

parameterized by
and G(·), H(·) hash functions

• Then they use their q queries to to obtain a new
block by trying

H(·)

G() ctr
si+1

xi+1

ctr = 0, 1, 2, . . .

xi+1 = I(. . . all local info . . .)

V (·), I(·), R(·)

• If a player finds a new block it extends

The Bitcoin Backbone (3)

• The new is propagated to all players via the
(unreliable/anonymous) broadcast

C

xi
xi�1

xi+1

C

V (·), R(·), I(·)parameterized by

• A player will compare any incoming chains and the
local chain w.r.t. their length/difficulty

The Bitcoin Backbone (4)

xi
xi�1

xi+1

yiyi�1

• Finally a player given a (Read) symbol it will return

V (·), R(·), I(·)parameterized by

R(x1, x2, . . . , xi+1)

Better Chain !
is adopted

Input entropy

• Simplifying assumption: I(.) chooses a random nonce
as part of x.

• Subsequently, function G maps the random nonces to
their hashes.

H(ctr,G(s, x)) < D

✓
q
total

2

◆
2��the parties choose the same

random nonce twice, has probability <=

G(.) maps those values to the same
one (collision)

✓
q
total

2

◆
2��<=

Pseudocode : Validate

Pseudocode : POW

Pseudocode : main loop

Requirements.
Input Validity : function I(.) produces inputs satisfiable by V(.)
Input Entropy : function I(.) will not produce the same x value with
overwhelming probability

Let’s prove a property!
 
During any period from round r to
the chain of an honest party will
grow by at least blocks
where ↵ = pq(n� t)

probability a single query to be successful p =
D

2�

D = corresponds to  
difficulty of producing a block

with error ✏ = negl(�)

s > r + �

0.9��

Proof - Step 1

• Two honest parties, a,b, submit a query to the RO.

• Let A, B be the events that the respective party finds
a hash value less than difficulty threshold D.

• Conditioning on the event that the G(.) values of the
two parties are distinct (no G collision - no repetition
of x-values), the events A, B are independent.

Proof - Step 2

The probability at least one honest party finds
a solution in a single round:

“successful round”
we call this a

1� (1� p)q(n�t) � 1� e�↵ � � = ↵� ↵2

Given independence :

Proof - Step 3
Define a random variable Xi

8i Prob[Xi] � ↵

Facts

Xi =

(
1 i-th round is successful

0 otherwise

Prob[Xi = 1 ^Xj = 1] = Prob[Xi = 1] · Prob[Xj = 1]

i 6= j !

�↵2

Proof - Step 4
• Lemma. At any round r, consider an honest party with

a chain of length L. By round s >= r every honest party
has adopted a chain of length at least

L+
s�1X

i=r

Xi

Proof. By induction on s-r = i
Base. i = 0 
Indeed, if the party has a chain of length L>0 at round
r, this means that at a previous round it has broadcasted
it. It follows that other honest parties by round r either have
adopted either this one (or an equally long chain).

Proof - Step 5

Induction Step. Suppose it holds for i, we show for i+1.
By round s-1 every honest party has received a chain 
of length

L+
s�2X

i=r

Xi

Xs�1 = 0if the result follows immediately
if Xs�1 = 1 we have that s-1 is a successful round  

thus at the end of the round at least
one honest party broadcasts a chain of
length

1 + L+
s�2X

i=r

Xi =
s�1X

i=r

Xi

Proof - Step 6

Tail bounds for Binomial distribution (Chernoff)

is a Binomial distributionX =
sX

i=r

Xi

Prob[X (1� �)µ] e��2µ/2

Corollary.

8� 2 (0, 1]

µ = E[X] � �(s� r)

Prob[X (1� �)�(s� r)] e��2�(s�r)/2

Proof - Step 7

• It follows that from round r to round s all honest parties
will grow their chain by s�1X

i=r

Xi

which is at least

with probability
� = 0.1We set

s > r + �

QED

(1� �)�(s� r � 1) � 0.9��

1� e��2�(s�r�1)/2 � 1� e�0.005��

Backbone Protocol
Properties

Common Prefix

(informally)

If two players prune a
sufficient number of

blocks from their
chains they will obtain

the same prefix

Chain Quality

(informally)

Any (large enough)
chunk of an honest
player’s chain will

contain some blocks
from honest players

Chain Growth

(informally)

the chain of any
honest player grows at
least at a steady rate -

the chain speed
coefficient

CP : will players converge?

• (Common-prefix) no matter the strategy of the
adversary, the chains of two honest parties will fork in
the last k blocks with probability at most

Assuming:

↵ :

� :
(as before)
expected adversarial POW’s per round

Common prefix property

f = ↵+ �

(↵� ↵2) >
f +

p
f2 + 4

2
· �

e�⌦(k)

= pqt

= pq(n� t)

= pqn

Common prefix property (2)
• Common-prefix theorem: (proof idea)

• Uniform round: is a round where all honest parties
invoke a POW with a chain of the same length.

• Uniquely successful round: is a round when exactly one
honest party is successful.

p1

p2

p3

p4

p1,p2,p3,p4

uniform uniquely successful round

Convergence block

Common prefix property (3)
• Common-prefix theorem: (proof idea, cont.)

• Uniform uniquely successful rounds allow parties to
produce convergence blocks.

• A fork that spans such convergence blocks may only
exist if an adversary produces one POW for each.

• The rate of such rounds is (1� �)�

.. therefore in order for the adversary to maintain
a fork for a certain length it should be � > (1� �)�

Common prefix property (4)
• Common-prefix theorem: (proof idea, cont.)

In order for the adversary to maintain
a fork for a certain length it should be � > (1� �)�

which we can derive
from our assumption

Now if we can let � ! 1
(fast information propagation)

(adversarial tolerance up to 50%)f ! 0

�2 � f�� 1 � 0

CQ : will honest blocks be adopted
by honest players?

Chain Quality Property (1)

• (Chain quality) any sequence of blocks in an honest
party’s chain will contain honest blocks with
probability

1� 1

�

`

1� e�⌦(`)

assuming:

↵ :

� :

expected honest POW’s per round
expected adversarial POW’s per round

f = ↵+ �

� � f +
p
f2 + 4

2
(↵� ↵2) > �� for

Chain Quality Property (2)

• we show our result is tight:

• there is an adversarial strategy that restricts the
honest parties to an exactly ratio of

• The strategy is a type of selfish mining (ES14)

• Malicious miners mine blocks in private attempting
to “hit” honest parties’ blocks when they become
available.

1� 1

�

The consensus problem
implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

b b b

Agreement = all parties output the same value
Validity = if all honest parties have the same insert
bit, then this matches the output
Termination = all honest parties terminate

Applying the backbone for
consensus

Nakamoto consensus protocol

Agreement works —
Validity only with constant probability

Applying the backbone for
consensus

a 1/3 consensus protocol

Agreement — Validity works but only 1/3

Robust Transaction Ledgers
• They are protocols that satisfy two properties:

Persistence: parameter k. If an honest
party reports a transaction tx k blocks deep,
then tx will be always reported, in the 
same position, by all honest parties.

Liveness: parameters u, k. If all honest parties
attempt to insert the transaction tx in the ledger,
then after u rounds, an honest party will report
it k blocks deep in the ledger.

transaction processing time : u as a function of k

Applying the backbone for a
transaction ledger

Bitcoin Persistence &
Liveness

• It can be shown that
u = 2k/(1� �)(↵� ↵2)

1� e�⌦(�2k)

with probability

Intuitively, persistence will follow from
agreement and liveness from chain quality

Liveness Attacks
joint work with G. Panagiotakos

1. performs block-withholding releasing blocks 
when honest parties get ahead.

2. when the transaction appears it continues block-
withholding but does not ever switch back  
to the main chain.

Attacker:

Applying the backbone for
consensus

can we get to 1/2 consensus?

Main obstacle (intuitively).
the blockchain itself does not provide high
enough validity.

This is due to low chain quality: we cannot
guarantee that we have enough blocks stemming
from honest parties in the blockchain

Overcoming the validity
problem

•  The n parties build a ledger but now generate
transactions based on POW that contain their inputs. !

•  Once the blockchain is long enough the parties’ prune
the last k blocks and output the majority of the values
drawn from the set of transactions in the ledger.!

Beware! given that POW’s are used for!
two different tasks how do we prevent!
the attacker from shifting its hashing power!
from the one to the other? !

[GKL15]

Not!
Secure!

given!
verify:!

given!
verify:!

given!

verify:!

given!

verify:!

2-for-1 POWs
Composition of POW-based protocols !

The Dynamic Setting

• Consider the sequence:
n1, n2, . . .

Generalized environment : in each round some

{nr}r2N

parties are activated

When a party is activated it sends a special
join message. It joins by the next round and starts
mining. The number of mining parties in each
round is nr

Block Difficulty

• The probability of winning a block is determined by the
target value D.

• Bitcoin uses SHA256 as the hashing algorithm.

• Solving the challenge requires an expected number
of steps.

difficulty calibration: aims at producing a block 
per 10 minutes. Each 2016 blocks, timestamps are
 taken into account and target D is calibrated.

2256/D

Security in the dynamic setting

• Are basic properties (common prefix, chain quality)
maintained in the dynamic setting?

• Not for arbitrary

• The calibration mechanism itself can be attacked.

• [Bahack’13]

{nr}r2N

Blockchain protocol variants

• Randomized Select.

• GHOST

• Bitcoin-NG

• Lightning Network

Randomized select

• Nodes choose randomly between chains received very
close to each other.

• Intention : neutralize attacks in the selfish mining
domain where the attacker persistently knocks out
honest blocks (due to e.g., network propagation
superiority).

• This makes a difference in the analysis in our
framework (as our rushing adversary has by default
network propagation superiority).

[ES14]
• A suggestion to modify the chain selection rule:

GHOST
• A suggestion to modify the chain selection rule:

[SZ13]

bitcoin

GHOST

GHOST =
greedy heaviest
observed subtree

Scalability

• How fast can we run blockchain protocols before
security breaks down?

Speed Security Tradeoffs

Bitcoin is far to the right in these diagrams
old bitcoin analysis is [GKL15]
new bitcoin-ghost analysis is from http://eprint.iacr.org/2015/1019

Round is taken to be around 12 sec

Attacks on CP property

[strategy :
maintain a fork

as much as
possible trying

to divide honest
parties between

the two branches]

Challenges
• Can we make the bitcoin backbone incentive compatible?

• What is the best way to extend the bitcoin ledger
functionality to enable advanced applications that require
complex transactions (e.g., contracts, automatic rewards
etc.)?

• Can we devise blockchain protocols with better performance
characteristics (while maintaining all security properties)?
can we prove optimality of protocols (e.g., liveness)?

• How to reduce the energy required for ledger maintenance - -
Alternative approaches to POW, e.g., proof of stake.

Post-Doc Opening
on blockchain systems

Aggelos Kiayias
akiayias@inf.ed.ac.uk

at University of Edinburgh

mailto:akiayias@inf.ed.ac.uk

