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Analyzing the Bitcoin 
Protocol

• Nakamoto : adversary vs. honest player working on a 
chain perform a random walk.  

• Assuming honest-majority the adversary cannot 
“catch” the honest players. 

• Nakamoto’s analysis can be easily seen to be limited:  

• the adversary can be more creative than just mining 
in private until he obtains a longer chain. E.g., it can 
broadcast conflicting chains to different sets of 
honest miners in order to split their mining power. 



The Bitcoin Backbone : analysis 
and applications

• Formal model.  
• Instead of arguing security against specific attacks 
argue security against all possible attackers in the model.  

•State general properties that should be satisfied. 

• The bitcoin backbone : 
the generic blockchain protocol derived from bitcoin

[Eurocrypt 2015, joint work with J. Garay, N. Leonardos]



GKL Model
• A general framework for arguing formally about 

bitcoin-like protocols.  

• in the tradition of synchronous distributed systems 
modeling. 

• Stand alone, synchronous execution. 

• Static number of parties.  

• Extensible to the dynamic / composition setting. 



The model : q-bounded 
synchronous setting

• Synchronous operation: time is divided in rounds. 

•In each round  
each player is allowed q queries to a hash function 

• messages are sent through a diffusion mechanism

n parties, t of which controlled by the adversary. 

• Adversary may : 
1. spoof messages  
2. generate arbitrary number of messages
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On the generality of the 
model

• We quantify over all possible adversaries.

Adv Adv

This includes

⇧⇧

some parties 
receiving only some 

of the messages

a large mining pool 
that is performing 

some type of selfish 
mining  

Or any combination thereof

⇧0



On the generality of the 
model

• There are n-t honest parties each one receiving q 
queries to the hash function per round. 

• The adversary is able to control t parties acting as a 
malicious mining pool.  

• A “flat” version of the world in terms of hashing 
power. 

• It is worse for honest parties to be separated (they 
have to pay the price of being decentralized).



Modeling the hash function

• Hash Function = [Random oracle] 

• State = Table T 

• Given any query x look up T for pair of the form (x,y) 

• If it does not exist sample y from {0,1}^λ and store 
(x,y) to T 

• Return y 

λ = security parameter



Execution & View
⇧protocol
Aadversary

environment Z

VIEW⇧
A,Z(1

�) concatenation of the  
view of each party at each round

n parties

random variable with support :  
1. coins of  
2. Random oracle

A,Z, n copies of ⇧

3 PPT machines



Property of a protocol

⇧a protocol
a number of parties n, t of which 
 controlled by adversary

fix

We say that the protocol has property

a predicate 

if and only if

8A 8Z Prob[Q(VIEW⇧
A,Z(1

�)] � 1� ✏

✏ = negl(�)

Q

Q

with error 

typically :

✏



Sanity check: why use the 
bitcoin protocol? 

hence known consensus  
algorithms  

cannot  be applied 

•No authentication 
infrastructure n,t are unknown

Classical results in distributed systems : 

Lamport, Shostak Pease ‘80



Sanity check: why use the 
bitcoin protocol? 

hence “secure MPC”  
cannot  be applied 

•No authentication 
infrastructure n,t are unknown

Classical results in cryptography : 

Goldreich Micali Wigderson 1987 
any function can be securely computed 
by n parties.  
Is this applicable to the bitcoin setting ? 



Precursors from a 
consensus point of view

• Aspnes-Jackson-Krishnamourthy 2005. Suggest use of 
POW to establish PKI (from which one may obtain 
broadcast (the byzantine generals) and then 
consensus) 

• Okun 2005. Defines anonymous consensus (but no 
POW - no efficient algorithm).



Bitcoin Backbone

• A precise algorithmic description of the core of the 
bitcoin protocol that isolates its consensus 
characteristics in a precise manner (while it abstracts 
away the transactional aspects)



The Bitcoin Backbone (1)

• players have a state      in the form of a “blockchain”:

parameterized by

C

H( )

xi
G( )G( )

sisi�1

xi�1
ctr ctr

satisfies the predicateC

and G(·), H(·) hash functions 

...

V (·), I(·), R(·)

V (C) = true

< D



The Bitcoin Backbone (2)

• Within a round, players obtain (INSERT, x) symbols from 
the environment and network and process them 

parameterized by
and G(·), H(·) hash functions 

• Then they use their q queries to           to obtain a new 
block by trying 

H(·)

G( ) ctr
si+1

xi+1

ctr = 0, 1, 2, . . .

xi+1 = I(. . . all local info . . .)

V (·), I(·), R(·)



• If a player finds a new block it extends 

The Bitcoin Backbone (3)

• The new       is propagated to all players via the 
(unreliable/anonymous) broadcast

C

xi
xi�1

xi+1

C

V (·), R(·), I(·)parameterized by



• A player will compare any incoming chains and the 
local chain w.r.t. their length/difficulty

The Bitcoin Backbone (4)

xi
xi�1

xi+1

yiyi�1

• Finally a player given a (Read) symbol it will return 

V (·), R(·), I(·)parameterized by

R(x1, x2, . . . , xi+1)

Better Chain ! 
is adopted



Input entropy

• Simplifying assumption: I(.) chooses a random nonce 
as part of x.  

• Subsequently, function G maps the random nonces to 
their hashes.

H(ctr,G(s, x)) < D

✓
q
total

2

◆
2��the parties choose the same 

random nonce twice, has probability <=

G(.) maps those values to the same 
one (collision)

✓
q
total

2

◆
2��<=



Pseudocode : Validate



Pseudocode : POW 



Pseudocode : main loop

Requirements.
Input Validity : function I(.) produces inputs satisfiable by V(.)
Input Entropy : function I(.) will not produce the same x value with 
overwhelming probability



Let’s prove a property!
 
During any period from round r to 
the chain of an honest party will  
grow by at least        blocks
where ↵ = pq(n� t)

probability a single query to be successful p =
D

2�

D = corresponds to  
difficulty of producing a block 

with error ✏ = negl(�)

s > r + �

0.9��



Proof - Step 1

• Two honest parties, a,b, submit a query to the RO. 

• Let A, B be the events that the respective party finds 
a hash value less than difficulty threshold D. 

• Conditioning on the event that the G(.) values of the 
two parties are distinct (no G collision - no repetition 
of x-values), the events A, B are independent.



Proof - Step 2

The probability at least one honest party finds  
a solution in a single round: 

“successful round”
we call this a

1� (1� p)q(n�t) � 1� e�↵ � � = ↵� ↵2

Given independence : 



Proof - Step 3
Define a random variable  Xi

8i Prob[Xi] � ↵

Facts

Xi =

(
1 i-th round is successful

0 otherwise

Prob[Xi = 1 ^Xj = 1] = Prob[Xi = 1] · Prob[Xj = 1]

i 6= j !

�↵2



Proof - Step 4
• Lemma. At any round r, consider an honest party with  

a chain of length L. By round s >= r  every honest party 
has adopted a chain of length at least

L+
s�1X

i=r

Xi

Proof.  By induction on s-r = i
Base.  i = 0 
Indeed, if the party has a chain of length L>0 at round 
r, this means that at a previous round it has broadcasted 
it. It follows that other honest parties by round r either have 
adopted either this one (or an equally long chain).



Proof - Step 5

Induction Step. Suppose it holds for i, we show for i+1. 
By round s-1 every honest party has received a chain 
of length 

L+
s�2X

i=r

Xi

Xs�1 = 0if the result follows immediately
if Xs�1 = 1 we have that s-1 is a successful round  

thus at the end of the round at least 
one honest party broadcasts a chain of 
length 

1 + L+
s�2X

i=r

Xi =
s�1X

i=r

Xi



Proof - Step 6

Tail bounds for Binomial distribution (Chernoff)

is a Binomial distributionX =
sX

i=r

Xi

Prob[X  (1� �)µ]  e��2µ/2

Corollary.

8� 2 (0, 1]

µ = E[X] � �(s� r)

Prob[X  (1� �)�(s� r)]  e��2�(s�r)/2



Proof - Step 7

• It follows that from round r to round s all honest parties 
will grow their chain by s�1X

i=r

Xi

which is at least 

with probability
� = 0.1We set

s > r + �

QED

(1� �)�(s� r � 1) � 0.9��

1� e��2�(s�r�1)/2 � 1� e�0.005��



Backbone Protocol 
Properties

Common Prefix  

(informally) 

If two players prune a 
sufficient number of 

blocks from their 
chains they will obtain 

the same prefix 

Chain Quality  

(informally) 

Any (large enough) 
chunk of an honest 
player’s chain will 

contain some blocks 
from honest players

Chain Growth  

(informally) 

the chain of any 
honest player grows at 
least at a steady rate - 

the chain speed 
coefficient



CP : will players converge?



   

• (Common-prefix)  no matter the strategy of the 
adversary, the chains of two honest parties will fork in 
the last k blocks with probability at most 

Assuming:

↵ :

� :
(as before)
expected adversarial POW’s per round

Common prefix property

f = ↵+ �

(↵� ↵2) >
f +

p
f2 + 4

2
· �

e�⌦(k)

= pqt

= pq(n� t)

= pqn



Common prefix property (2)
• Common-prefix theorem:  (proof idea) 

• Uniform round: is a round where all honest parties 
invoke a POW with a chain of the same length. 

• Uniquely successful round: is a round when exactly one 
honest party is successful. 

p1

p2

p3

p4

p1,p2,p3,p4

uniform uniquely successful round

Convergence block



Common prefix property (3)
• Common-prefix theorem:  (proof idea, cont.) 

• Uniform uniquely successful rounds allow parties to 
produce convergence blocks. 

• A fork that spans such convergence blocks may only 
exist if an adversary produces one POW for each. 

• The rate of such rounds is (1� �)�

.. therefore in order for the adversary to maintain 
a fork for a certain length it should be � > (1� �)�



Common prefix property (4)
• Common-prefix theorem:  (proof idea, cont.)

In order for the adversary to maintain 
a fork for a certain length it should be � > (1� �)�

which we can derive 
from our assumption

Now if             we can let � ! 1
(fast information propagation)

(adversarial tolerance up to 50%)f ! 0

�2 � f�� 1 � 0



CQ : will honest blocks be adopted 
by honest players?



Chain Quality Property (1)

• (Chain quality) any sequence of     blocks in an honest 
party’s chain will contain                honest blocks with 
probability

1� 1

�

`

1� e�⌦(`)

assuming:

↵ :

� :

expected honest POW’s per round
expected adversarial POW’s per round

f = ↵+ �

� � f +
p
f2 + 4

2
(↵� ↵2) > �� for



Chain Quality Property (2)

• we show our result is tight: 

• there is an adversarial strategy that restricts  the 
honest parties to an exactly ratio of 

• The strategy is a type of selfish mining (ES14) 

• Malicious miners mine blocks in private attempting 
to “hit” honest parties’ blocks when they become 
available. 

1� 1

�



The consensus problem
implementing consensus:

<insert,b1> <insert,b2> <insert,bn>

b b b

Agreement = all parties output the same value
Validity = if all honest parties have the same insert 
bit, then this matches  the output
Termination = all honest parties terminate



Applying the backbone for 
consensus

Nakamoto consensus protocol

Agreement works —
Validity only with constant probability



Applying the backbone for 
consensus

a 1/3 consensus protocol

Agreement — Validity works but only 1/3



Robust Transaction Ledgers
• They are protocols that satisfy two properties:

Persistence: parameter k. If an honest 
party reports a transaction tx k blocks deep, 
then tx  will be always reported, in the 
same position, by all honest parties.

Liveness: parameters u, k. If all honest parties  
attempt to insert the transaction tx in the ledger, 
then after u rounds, an honest party will report 
it k blocks deep in the ledger.

transaction processing time : u as a function of k



Applying the backbone for a 
transaction ledger



Bitcoin Persistence & 
Liveness

• It can be shown that 
u = 2k/(1� �)(↵� ↵2)

1� e�⌦(�2k)

with probability 

Intuitively, persistence will follow from  
agreement and liveness from chain quality



Liveness Attacks
joint work with G. Panagiotakos

1. performs block-withholding releasing blocks 
when honest parties get ahead. 

2. when the transaction appears it continues block-
withholding but does not ever switch back  
to the main chain.

Attacker:



Applying the backbone for 
consensus

can we get to 1/2 consensus? 

Main obstacle (intuitively). 
the blockchain itself does not provide high  
enough validity. 

This is due to low chain quality: we cannot 
guarantee that we have enough blocks stemming 
from honest parties in the blockchain



Overcoming the validity 
problem

•  The n parties build a ledger but now generate 
transactions based on POW that contain their inputs. !

•  Once the blockchain is long enough the parties’ prune 
the last k blocks and output the majority of the values 
drawn from the set of transactions in the ledger.!

Beware! given that POW’s are used for!
two different tasks how do we prevent!
the attacker from shifting its hashing power!
from the one to the other? !

[GKL15]



Not!
Secure!

given!
verify:!

given!
verify:!

given!

verify:!

given!

verify:!

2-for-1 POWs
Composition of POW-based protocols !



The Dynamic Setting

• Consider the sequence: 
n1, n2, . . .

Generalized environment : in each round some

{nr}r2N

parties are activated

When a party is activated it sends a special 
join message. It joins by the next round and starts 
mining. The number of mining parties in each  
round is nr



Block Difficulty

• The probability of winning a block is determined by the 
target value D. 

• Bitcoin uses SHA256 as the hashing algorithm. 

• Solving the challenge requires an expected number 
of               steps. 

difficulty calibration: aims at producing a block 
per 10 minutes. Each 2016 blocks, timestamps are 
 taken into account and target D is calibrated. 

2256/D



Security in the dynamic setting

• Are basic properties (common prefix, chain quality) 
maintained in the dynamic setting? 

• Not for arbitrary  

• The calibration mechanism itself can be attacked. 

• [Bahack’13]

{nr}r2N



Blockchain protocol variants

• Randomized Select. 

• GHOST 

• Bitcoin-NG 

• Lightning Network



Randomized select

• Nodes choose randomly between chains received very 
close to each other. 

• Intention : neutralize attacks in the selfish mining 
domain where the attacker persistently knocks out 
honest blocks (due to e.g., network propagation 
superiority). 

• This makes a difference in the analysis in our 
framework (as our rushing adversary has by default 
network propagation superiority).

[ES14]
• A suggestion to modify the chain selection rule: 



GHOST
• A suggestion to modify the chain selection rule: 

[SZ13]

bitcoin

GHOST

GHOST =  
greedy heaviest 
observed subtree



Scalability

• How fast can we run blockchain protocols before 
security breaks down?



Speed Security Tradeoffs

Bitcoin is far to the right in these diagrams
old bitcoin analysis is [GKL15] 
new bitcoin-ghost analysis is from  http://eprint.iacr.org/2015/1019

Round is taken to be around 12 sec



Attacks on CP property

[strategy :  
maintain a fork  

as much as  
possible trying 

to divide honest 
parties between 

the two branches]



Challenges
• Can we make the bitcoin backbone incentive compatible? 

• What is the best way to extend the bitcoin ledger 
functionality to enable advanced applications that require 
complex transactions (e.g., contracts, automatic rewards 
etc.)? 

• Can we devise blockchain protocols with better performance 
characteristics (while maintaining all security properties)? 
can we prove optimality of protocols (e.g., liveness)?  

• How to reduce the energy required for ledger maintenance - -
Alternative approaches to POW, e.g., proof of stake.
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