
����������	

��������

Consensus

Roger Wattenhofer

wattenhofer@ethz.ch

Summer School May-June 2016

ii

Contents

1 Fault-Tolerance & Paxos v
1.1 Client/Server . v
1.2 Paxos . ix

2 Consensus xvii
2.1 Two Friends . xvii
2.2 Consensus . xvii
2.3 Impossibility of Consensus . xviii
2.4 Randomized Consensus . xxiii
2.5 Shared Coin . xxvi

3 Authenticated Agreement xxix
3.1 Agreement with Authentication xxix
3.2 Zyzzyva . xxx

iii

iv CONTENTS

Chapter 1

Fault-Tolerance & Paxos

How do you create a fault-tolerant distributed system? In this chapter we start
out with simple questions, and, step by step, improve our solutions until we
arrive at a system that works even under adverse circumstances, Paxos.

1.1 Client/Server

Definition 1.1 (node). We call a single actor in the system node. In a com-
puter network the computers are the nodes, in the classical client-server model
both the server and the client are nodes, and so on. If not stated otherwise, the
total number of nodes in the system is n.

Model 1.2 (message passing). In the message passing model we study dis-
tributed systems that consist of a set of nodes. Each node can perform local
computations, and can send messages to every other node.

Remarks:

• We start with two nodes, the smallest number of nodes in a distributed
system. We have a client node that wants to “manipulate” data (e.g.,
store, update, . . .) on a remote server node.

Algorithm 1.3 Näıve Client-Server Algorithm

1: Client sends commands one at a time to server

Model 1.4 (message loss). In the message passing model with message loss,
for any specific message, it is not guaranteed that it will arrive safely at the
receiver.

Remarks:

• A related problem is message corruption, i.e., a message is received
but the content of the message is corrupted. In practice, in contrast
to message loss, message corruption can be handled quite well, e.g. by
including additional information in the message, such as a checksum.

v

vi CHAPTER 1. FAULT-TOLERANCE & PAXOS

• Algorithm 1.3 does not work correctly if there is message loss, so we
need a little improvement.

Algorithm 1.5 Client-Server Algorithm with Acknowledgments

1: Client sends commands one at a time to server
2: Server acknowledges every command
3: If the client does not receive an acknowledgment within a reasonable time,

the client resends the command

Remarks:

• Sending commands “one at a time” means that when the client sent
command c, the client does not send any new command c′ until it
received an acknowledgment for c.

• Since not only messages sent by the client can be lost, but also ac-
knowledgments, the client might resend a message that was already
received and executed on the server. To prevent multiple executions of
the same command, one can add a sequence number to each message,
allowing the receiver to identify duplicates.

• This simple algorithm is the basis of many reliable protocols, e.g.
TCP.

• The algorithm can easily be extended to work with multiple servers:
The client sends each command to every server, and once the client
received an acknowledgment from each server, the command is con-
sidered to be executed successfully.

• What about multiple clients?

Model 1.6 (variable message delay). In practice, messages might experience
different transmission times, even if they are being sent between the same two
nodes.

Remarks:

• Throughout this chapter, we assume the variable message delay model.

Theorem 1.7. If Algorithm 1.5 is used with multiple clients and multiple
servers, the servers might see the commands in different order, leading to an
inconsistent state.

Proof. Assume we have two clients u1 and u2, and two servers s1 and s2. Both
clients issue a command to update a variable x on the servers, initially x = 0.
Client u1 sends command x = x+ 1 and client u2 sends x = 2 · x.

Let both clients send their message at the same time. With variable message
delay, it can happen that s1 receives the message from u1 first, and s2 receives
the message from u2 first.1 Hence, s1 computes x = (0 + 1) · 2 = 2 and s2
computes x = (0 · 2) + 1 = 1.

1For example, u1 and s1 are (geographically) located close to each other, and so are u2

and s2.

1.1. CLIENT/SERVER vii

Definition 1.8 (state replication). A set of nodes achieves state replication,
if all nodes execute a (potentially infinite) sequence of commands c1, c2, c3, . . . ,
in the same order.

Remarks:

• State replication is a fundamental property for distributed systems.

• For people working in the financial tech industry, state replication is
often synonymous with the term blockchain. The Bitcoin blockchain
we will discuss in Chapter ?? is indeed one way to implement state
replication. However, as we will see in all the other chapters, there
are many alternative concepts that are worth knowing, with different
properties.

• Since state replication is trivial with a single server, we can desig-
nate a single server as a serializer. By letting the serializer distribute
the commands, we automatically order the requests and achieve state
replication!

Algorithm 1.9 State Replication with a Serializer

1: Clients send commands one at a time to the serializer
2: Serializer forwards commands one at a time to all other servers
3: Once the serializer received all acknowledgments, it notifies the client about

the success

Remarks:

• This idea is sometimes also referred to as master-slave replication.

• What about node failures? Our serializer is a single point of failure!

• Can we have a more distributed approach of solving state replication?
Instead of directly establishing a consistent order of commands, we
can use a different approach: We make sure that there is always at
most one client sending a command; i.e., we use mutual exclusion,
respectively locking.

Algorithm 1.10 Two-Phase Protocol

Phase 1

1: Client asks all servers for the lock

Phase 2

2: if client receives lock from every server then
3: Client sends command reliably to each server, and gives the lock back
4: else
5: Clients gives the received locks back
6: Client waits, and then starts with Phase 1 again
7: end if

viii CHAPTER 1. FAULT-TOLERANCE & PAXOS

Remarks:

• This idea appears in many contexts and with different names, usually
with slight variations, e.g. two-phase locking (2PL).

• Another example is the two-phase commit (2PC) protocol, typically
presented in a database environment. The first phase is called the
preparation of a transaction, and in the second phase the transaction
is either committed or aborted. The 2PC process is not started at the
client but at a designated server node that is called the coordinator.

• It is often claimed that 2PL and 2PC provide better consistency guar-
antees than a simple serializer if nodes can recover after crashing. In
particular, alive nodes might be kept consistent with crashed nodes,
for transactions that started while the crashed node was still running.
This benefit was even improved in a protocol that uses an additional
phase (3PC).

• The problem with 2PC or 3PC is that they are not well-defined if
exceptions happen.

• Does Algorithm 1.10 really handle node crashes well? No! In fact,
it is even worse than the simple serializer approach (Algorithm 1.9):
Instead of having a only one node which must be available, Algorithm
1.10 requires all servers to be responsive!

• Does Algorithm 1.10 also work if we only get the lock from a subset
of servers? Is a majority of servers enough?

• What if two or more clients concurrently try to acquire a majority
of locks? Do clients have to abandon their already acquired locks, in
order not to run into a deadlock? How? And what if they crash before
they can release the locks? Do we need a slightly different concept?

1.2. PAXOS ix

1.2 Paxos

Definition 1.11 (ticket). A ticket is a weaker form of a lock, with the following
properties:

• Reissuable: A server can issue a ticket, even if previously issued tickets
have not yet been returned.

• Ticket expiration: If a client sends a message to a server using a previ-
ously acquired ticket t, the server will only accept t, if t is the most recently
issued ticket.

Remarks:

• There is no problem with crashes: If a client crashes while holding
a ticket, the remaining clients are not affected, as servers can simply
issue new tickets.

• Tickets can be implemented with a counter: Each time a ticket is
requested, the counter is increased. When a client tries to use a ticket,
the server can determine if the ticket is expired.

• What can we do with tickets? Can we simply replace the locks in
Algorithm 1.10 with tickets? We need to add at least one additional
phase, as only the client knows if a majority of the tickets have been
valid in Phase 2.

x CHAPTER 1. FAULT-TOLERANCE & PAXOS

Algorithm 1.12 Näıve Ticket Protocol

Phase 1

1: Client asks all servers for a ticket

Phase 2

2: if a majority of the servers replied then
3: Client sends command together with ticket to each server
4: Server stores command only if ticket is still valid, and replies to client
5: else
6: Client waits, and then starts with Phase 1 again
7: end if

Phase 3

8: if client hears a positive answer from a majority of the servers then
9: Client tells servers to execute the stored command

10: else
11: Client waits, and then starts with Phase 1 again
12: end if

Remarks:

• There are problems with this algorithm: Let u1 be the first client
that successfully stores its command c1 on a majority of the servers.
Assume that u1 becomes very slow just before it can notify the servers
(Line 7), and a client u2 updates the stored command in some servers
to c2. Afterwards, u1 tells the servers to execute the command. Now
some servers will execute c1 and others c2!

• How can this problem be fixed? We know that every client u2 that
updates the stored command after u1 must have used a newer ticket
than u1. As u1’s ticket was accepted in Phase 2, it follows that u2
must have acquired its ticket after u1 already stored its value in the
respective server.

• Idea: What if a server, instead of only handing out tickets in Phase
1, also notifies clients about its currently stored command? Then, u2
learns that u1 already stored c1 and instead of trying to store c2, u2
could support u1 by also storing c1. As both clients try to store and
execute the same command, the order in which they proceed is no
longer a problem.

• But what if not all servers have the same command stored, and u2
learns multiple stored commands in Phase 1. What command should
u2 support?

• Observe that it is always safe to support the most recently stored
command. As long as there is no majority, clients can support any
command. However, once there is a majority, clients need to support
this value.

1.2. PAXOS xi

• So, in order to determine which command was stored most recently,
servers can remember the ticket number that was used to store the
command, and afterwards tell this number to clients in Phase 1.

• If every server uses its own ticket numbers, the newest ticket does not
necessarily have the largest number. This problem can be solved if
clients suggest the ticket numbers themselves!

xii CHAPTER 1. FAULT-TOLERANCE & PAXOS

Algorithm 1.13 Paxos

Client (Proposer)

Initialization .

c / command to execute
t = 0 / ticket number to try

Phase 1 .

1: t = t+ 1
2: Ask all servers for ticket t

Phase 2 .

7: if a majority answers ok then
8: Pick (Tstore, C) with largest Tstore
9: if Tstore > 0 then

10: c = C
11: end if
12: Send propose(t, c) to same

majority
13: end if

Phase 3 .

19: if a majority answers success

then
20: Send execute(c) to every server
21: end if

Server (Acceptor)

Tmax = 0 / largest issued ticket

C = ⊥ / stored command
Tstore = 0 / ticket used to store C

3: if t > Tmax then
4: Tmax = t
5: Answer with ok(Tstore, C)
6: end if

14: if t = Tmax then
15: C = c
16: Tstore = t
17: Answer success
18: end if

Remarks:

• Unlike previously mentioned algorithms, there is no step where a client
explicitly decides to start a new attempt and jumps back to Phase 1.
Note that this is not necessary, as a client can decide to abort the
current attempt and start a new one at any point in the algorithm.
This has the advantage that we do not need to be careful about se-
lecting “good” values for timeouts, as correctness is independent of
the decisions when to start new attempts.

• The performance can be improved by letting the servers send negative

1.2. PAXOS xiii

replies in phases 1 and 2 if the ticket expired.

• The contention between different clients can be alleviated by random-
izing the waiting times between consecutive attempts.

Lemma 1.14. We call a message propose(t,c) sent by clients on Line 12 a
proposal for (t,c). A proposal for (t,c) is chosen, if it is stored by a majority
of servers (Line 15). For every issued propose(t′,c′) with t′ > t holds that
c′ = c, if there was a chosen propose(t,c).

Proof. Observe that there can be at most one proposal for every ticket number
τ since clients only send a proposal if they received a majority of the tickets for
τ (Line 7). Hence, every proposal is uniquely identified by its ticket number τ .

Assume that there is at least one propose(t′,c′) with t′ > t and c′ 6= c; of
such proposals, consider the proposal with the smallest ticket number t′. Since
both this proposal and also the propose(t,c) have been sent to a majority of the
servers, we can denote by S the non-empty intersection of servers that have been
involved in both proposals. Recall that since propose(t,c) has been chosen, this
means that that at least one server s ∈ S must have stored command c; thus,
when the command was stored, the ticket number t was still valid. Hence, s
must have received the request for ticket t′ after it already stored propose(t,c),
as the request for ticket t′ invalidates ticket t.

Therefore, the client that sent propose(t′,c′) must have learned from s that
a client already stored propose(t,c). Since a client adapts its proposal to the
command that is stored with the highest ticket number so far (Line 8), the client
must have proposed c as well. There is only one possibility that would lead to
the client not adapting c: If the client received the information from a server
that some client stored propose(t∗,c∗), with c∗ 6= c and t∗ > t. But in that case,
a client must have sent propose(t∗,c∗) with t < t∗ < t′, but this contradicts the
assumption that t′ is the smallest ticket number of a proposal issued after t.

Theorem 1.15. If a command c is executed by some servers, all servers (even-
tually) execute c.

Proof. From Lemma 1.14 we know that once a proposal for c is chosen, every
subsequent proposal is for c. As there is exactly one first propose(t,c) that is
chosen, it follows that all successful proposals will be for the command c. Thus,
only proposals for a single command c can be chosen, and since clients only
tell servers to execute a command, when it is chosen (Line 20), each client will
eventually tell every server to execute c.

Remarks:

• If the client with the first successful proposal does not crash, it will
directly tell every server to execute c.

• However, if the client crashes before notifying any of the servers, the
servers will execute the command only once the next client is success-
ful. Once a server received a request to execute c, it can inform every
client that arrives later that there is already a chosen command, so
that the client does not waste time with the proposal process.

xiv CHAPTER 1. FAULT-TOLERANCE & PAXOS

• Note that Paxos cannot make progress if half (or more) of the servers
crash, as clients cannot achieve a majority anymore.

• The original description of Paxos uses three roles: Proposers, accep-
tors and learners. Learners have a trivial role: They do nothing, they
just learn from other nodes which command was chosen.

• We assigned every node only one role. In some scenarios, it might
be useful to allow a node to have multiple roles. For example in a
peer-to-peer scenario nodes need to act as both client and server.

• Clients (Proposers) must be trusted to follow the protocol strictly.
However, this is in many scenarios not a reasonable assumption. In
such scenarios, the role of the proposer can be executed by a set of
servers, and clients need to contact proposers, to propose values in
their name.

• So far, we only discussed how a set of nodes can reach decision for a
single command with the help of Paxos. We call such a single decision
an instance of Paxos.

• If we want to execute multiple commands, we can extend each in-
stance with an instance number, that is sent around with every mes-
sage. Once a command is chosen, any client can decide to start a new
instance with the next number. If a server did not realize that the
previous instance came to a decision, the server can ask other servers
about the decisions to catch up.

Chapter Notes

Two-phase protocols have been around for a long time, and it is unclear if there
is a single source of this idea. One of the earlier descriptions of this concept can
found in the book of Gray [Gra78].

Leslie Lamport introduced Paxos in 1989. But why is it called Paxos? Lam-
port described the algorithm as the solution to a problem of the parliament
of a fictitious Greek society on the island Paxos. He even liked this idea so
much, that he gave some lectures in the persona of an Indiana-Jones-style ar-
chaeologist! When the paper was submitted, many readers were so distracted by
the descriptions of the activities of the legislators, they did not understand the
meaning and purpose of the algorithm. The paper was rejected. But Lamport
refused to rewrite the paper, and he later wrote that he “was quite annoyed at
how humorless everyone working in the field seemed to be”. A few years later,
when the need for a protocol like Paxos arose again, Lamport simply took the
paper out of the drawer and gave it to his colleagues. They liked it. So Lamport
decided to submit the paper (in basically unaltered form!) again, 8 years after
he wrote it – and it got accepted! But as this paper [Lam98] is admittedly hard
to read, he had mercy, and later wrote a simpler description of Paxos [Lam01].

This chapter was written in collaboration with David Stolz.

BIBLIOGRAPHY xv

Bibliography

[Gra78] James N Gray. Notes on data base operating systems. Springer, 1978.

[Lam98] Leslie Lamport. The part-time parliament. ACM Transactions on
Computer Systems (TOCS), 16(2):133–169, 1998.

[Lam01] Leslie Lamport. Paxos made simple. ACM Sigact News, 32(4):18–25,
2001.

xvi CHAPTER 1. FAULT-TOLERANCE & PAXOS

Chapter 2

Consensus

2.1 Two Friends

Alice wants to arrange dinner with Bob, and since both of them are very re-
luctant to use the “call” functionality of their phones, she sends a text message
suggesting to meet for dinner at 6pm. However, texting is unreliable, and Alice
cannot be sure that the message arrives at Bob’s phone, hence she will only go
to the meeting point if she receives a confirmation message from Bob. But Bob
cannot be sure that his confirmation message is received; if the confirmation is
lost, Alice cannot determine if Bob did not even receive her suggestion, or if
Bob’s confirmation was lost. Therefore, Bob demands a confirmation message
from Alice, to be sure that she will be there. But as this message can also be
lost. . .

You can see that such a message exchange continues forever, if both Alice
and Bob want to be sure that the other person will come to the meeting point!

Remarks:

• Such a protocol cannot terminate: Assume that there are protocols
which lead to agreement, and P is one of the protocols which require
the least number of messages. As the last confirmation might be lost
and the protocol still needs to guarantee agreement, we can simply
decide to always omit the last message. This gives us a new protocol
P ′ which requires less messages than P , contradicting the assumption
that P required the minimal amount of messages.

• Can Alice and Bob use Paxos?

2.2 Consensus

In Chapter 1 we studied a problem that we vaguely called agreement. We will
now introduce a formally specified variant of this problem, called consensus.

Definition 2.1 (consensus). There are n nodes, of which at most f might crash,
i.e., at least n− f nodes are correct. Node i starts with an input value vi. The
nodes must decide for one of those values, satisfying the following properties:

xvii

xviii CHAPTER 2. CONSENSUS

• Agreement All correct nodes decide for the same value.

• Termination All correct nodes terminate in finite time.

• Validity The decision value must be the input value of a node.

Remarks:

• We assume that every node can send messages to every other node,
and that we have reliable links, i.e., a message that is sent will be
received.

• There is no broadcast medium. If a node wants to send a message to
multiple nodes, it needs to send multiple individual messages.

• Does Paxos satisfy all three criteria? If you study Paxos carefully, you
will notice that Paxos does not guarantee termination. For example,
the system can be stuck forever if two clients continuously request
tickets, and neither of them ever manages to acquire a majority.

2.3 Impossibility of Consensus

Model 2.2 (asynchronous). In the asynchronous model, algorithms are event
based (“upon receiving message . . . , do . . . ”). Nodes do not have access to a
synchronized wall-clock. A message sent from one node to another will arrive
in a finite but unbounded time.

Remarks:

• The asynchronous time model is a widely used formalization of the
variable message delay model (Model 1.6).

Definition 2.3 (asynchronous runtime). For algorithms in the asynchronous
model, the runtime is the number of time units from the start of the execution
to its completion in the worst case (every legal input, every execution scenario),
assuming that each message has a delay of at most one time unit.

Remarks:

• The maximum delay cannot be used in the algorithm design, i.e., the
algorithm must work independent of the actual delay.

• Asynchronous algorithms can be thought of as systems, where local
computation is significantly faster than message delays, and thus can
be done in no time. Nodes are only active once an event occurs (a
message arrives), and then they perform their actions “immediately”.

• We will show now that crash failures in the asynchronous model can
be quite harsh. In particular there is no deterministic fault-tolerant
consensus algorithm in the asynchronous model, not even for binary
input.

2.3. IMPOSSIBILITY OF CONSENSUS xix

Definition 2.4 (configuration). We say that a system is fully defined (at any
point during the execution) by its configuration C. The configuration includes
the state of every node, and all messages that are in transit (sent but not yet
received).

Definition 2.5 (univalent). We call a configuration C univalent, if the deci-
sion value is determined independently of what happens afterwards.

Remarks:

• We call a configuration that is univalent for value v v-valent.

• Note that a configuration can be univalent, even though no single
node is aware of this. For example, the configuration in which all
nodes start with value 0 is 0-valent (due to the validity requirement).

• As we restricted the input values to be binary, the decision value
of any consensus algorithm will also be binary (due to the validity
requirement).

Definition 2.6 (bivalent). A configuration C is called bivalent if the nodes
might decide for 0 or 1.

Remarks:

• The decision value depends on the order in which messages are re-
ceived or on crash events. I.e., the decision is not yet made.

• We call the initial configuration of an algorithm C0. When nodes are
in C0, all of them executed their initialization code and possibly sent
some messages, and are now waiting for the first message to arrive.

Lemma 2.7. There is at least one selection of input values V such that the
according initial configuration C0 is bivalent, if f ≥ 1.

Proof. Note that C0 only depends on the input values of the nodes, as no event
occurred yet. Let V = [v0, v1, . . . , vn−1] denote the array of input values, where
vi is the input value of node i.

We construct n+1 arrays V0, V1, . . . , Vn, where the index i in Vi denotes the
position in the array up to which all input values are 1. So, V0 = [0, 0, 0, . . . , 0],
V1 = [1, 0, 0, . . . , 0], and so on, up to Vn = [1, 1, 1, . . . , 1].

Note that the configuration corresponding to V0 must be 0-valent so that the
validity requirement is satisfied. Analogously, the configuration corresponding
to Vn must be 1-valent. Assume that all initial configurations with starting val-
ues Vi are univalent. Therefore, there must be at least one index b, such that the
configuration corresponding to Vb is 0-valent, and configuration corresponding
to Vb+1 is 1-valent. Observe that only the input value of the bth node differs
from Vb to Vb+1.

Since we assumed that the algorithm can tolerate at least one failure, i.e.,
f ≥ 1, we look at the following execution: All nodes except b start with their
initial value according to Vb respectively Vb+1. Node b is “extremely slow”;
i.e., all messages sent by b are scheduled in such a way, that all other nodes
must assume that b crashed, in order to satisfy the termination requirement.

xx CHAPTER 2. CONSENSUS

Since the nodes cannot determine the value of b, and we assumed that all initial
configurations are univalent, they will decide for a value v independent of the
initial value of b. Since Vb is 0-valent, v must be 0. However we know that
Vb+1 is 1-valent, thus v must be 1. Since v cannot be both 0 and 1, we have a
contradiction.

Definition 2.8 (transition). A transition from configuration C to a following
configuration Cτ is characterized by an event τ = (u,m), i.e., node u receiving
message m.

Remarks:

• Transitions are the formally defined version of the “events” in the
asynchronous model we described before.

• A transition τ = (u,m) is only applicable to C, if m was still in transit
in C.

• Cτ differs from C as follows: m is no longer in transit, u has possibly
a different state (as u can update its state based on m), and there are
(potentially) new messages in transit, sent by u.

Definition 2.9 (configuration tree). The configuration tree is a directed tree
of configurations. Its root is the configuration C0 which is fully characterized by
the input values V . The edges of the tree are the transitions; every configuration
has all applicable transitions as outgoing edges.

Remarks:

• For any algorithm, there is exactly one configuration tree for every
selection of input values.

• Leaves are configurations where the execution of the algorithm termi-
nated. Note that we use termination in the sense that the system as
a whole terminated, i.e., there will not be any transition anymore.

• Every path from the root to a leaf is one possible asynchronous exe-
cution of the algorithm.

• Leaves must be univalent, or the algorithm terminates without agree-
ment.

• If a node u crashes when the system is in C, all transitions (u, ∗) are
removed from C in the configuration tree.

Lemma 2.10. Assume two transitions τ1 = (u1,m1) and τ2 = (u2,m2) for
u1 6= u2 are both applicable to C. Let Cτ1τ2 be the configuration that follows C
by first applying transition τ1 and then τ2, and let Cτ2τ1 be defined analogously.
It holds that Cτ1τ2 = Cτ2τ1 .

Proof. Observe that τ2 is applicable to Cτ1 , since m2 is still in transit and τ1
cannot change the state of u2. With the same argument τ1 is applicable to Cτ2 ,
and therefore both Cτ1τ2 and Cτ2τ1 are well-defined. Since the two transitions

2.3. IMPOSSIBILITY OF CONSENSUS xxi

are completely independent of each other, meaning that they consume the same
messages, lead to the same state transitions and to the same messages being
sent, it follows that Cτ1τ2 = Cτ2τ1 .

Definition 2.11 (critical configuration). We say that a configuration C is crit-
ical, if C is bivalent, but all configurations that are direct children of C in the
configuration tree are univalent.

Remarks:

• Informally, C is critical, if it is the last moment in the execution where
the decision is not yet clear. As soon as the next message is processed
by any node, the decision will be determined.

Lemma 2.12. If a system is in a bivalent configuration, it must reach a critical
configuration within finite time, or it does not always solve consensus.

Proof. Recall that there is at least one bivalent initial configuration (Lemma
2.7). Assuming that this configuration is not critical, there must be at least one
bivalent following configuration; hence, the system may enter this configura-
tion. But if this configuration is not critical as well, the system may afterwards
progress into another bivalent configuration. As long as there is no critical con-
figuration, an unfortunate scheduling (selection of transitions) can always lead
the system into another bivalent configuration. The only way how an algo-
rithm can enforce to arrive in a univalent configuration is by reaching a critical
configuration.

Therefore we can conclude that a system which does not reach a critical
configuration has at least one possible execution where it will terminate in a
bivalent configuration (hence it terminates without agreement), or it will not
terminate at all.

Lemma 2.13. If a configuration tree contains a critical configuration, crashing
a single node can create a bivalent leaf; i.e., a crash prevents the algorithm from
reaching agreement.

Proof. Let C denote critical configuration in a configuration tree, and let T
be the set of transitions applicable to C. Let τ0 = (u0,m0) ∈ T and τ1 =
(u1,m1) ∈ T be two transitions, and let Cτ0 be 0-valent and Cτ1 be 1-valent.
Note that T must contain these transitions, as C is a critical configuration.

Assume that u0 6= u1. Using Lemma 2.10 we know that C has a following
configuration Cτ0τ1 = Cτ1τ0 . Since this configuration follows Cτ0 it must be 0-
valent. However, this configuration also follows Cτ1 and must hence be 1-valent.
This is a contradiction and therefore u0 = u1 must hold.

Therefore we can pick one particular node u for which there is a transition
τ = (u,m) ∈ T which leads to a 0-valent configuration. As shown before, all
transitions in T which lead to a 1-valent configuration must also take place on
u. Since C is critical, there must be at least one such transition. Applying the
same argument again, it follows that all transitions in T that lead to a 0-valent
configuration must take place on u as well, and since C is critical, there is no
transition in T that leads to a bivalent configuration. Therefore all transitions
applicable to C take place on the same node u!

xxii CHAPTER 2. CONSENSUS

If this node u crashes while the system is in C, all transitions are removed,
and therefore the system is stuck in C, i.e., it terminates in C. But as C is
critical, and therefore bivalent, the algorithm fails to reach an agreement.

Theorem 2.14. There is no deterministic algorithm which always achieves
consensus in the asynchronous model, with f > 0.

Proof. We assume that the input values are binary, as this is the easiest non-
trivial possibility. From Lemma 2.7 we know that there must be at least one
bivalent initial configuration C. Using Lemma 2.12 we know that if an algo-
rithm solves consensus, all executions starting from the bivalent configuration
C must reach a critical configuration. But if the algorithm reaches a critical
configuration, a single crash can prevent agreement (Lemma 2.13).

Remarks:

• If f = 0, then each node can simply send its value to all others, wait
for all values, and choose the minimum.

• But if a single node may crash, there is no deterministic solution to
consensus in the asynchronous model.

• How can the situation be improved? For example by giving each node
access to randomness, i.e., we allow each node to toss a coin.

2.4. RANDOMIZED CONSENSUS xxiii

2.4 Randomized Consensus

Algorithm 2.15 Randomized Consensus (Ben-Or)

1: vi ∈ {0, 1} / input bit
2: round = 1
3: decided = false

4: Broadcast myValue(vi, round)

5: while true do

Propose

6: Wait until a majority of myValue messages of current round arrived
7: if all messages contain the same value v then
8: Broadcast propose(v, round)
9: else

10: Broadcast propose(⊥, round)
11: end if

12: if decided then
13: Broadcast myValue(vi, round+1)
14: Decide for vi and terminate
15: end if

Adapt

16: Wait until a majority of propose messages of current round arrived
17: if all messages propose the same value v then
18: vi = v
19: decide = true
20: else if there is at least one proposal for v then
21: vi = v
22: else
23: Choose vi randomly, with Pr[vi = 0] = Pr[vi = 1] = 1/2
24: end if
25: round = round + 1
26: Broadcast myValue(vi, round)
27: end while

Remarks:

• The idea of Algorithm 2.15 is very simple: Either all nodes start with
the same input bit, which makes consensus easy. Otherwise, nodes
toss a coin until a large number of nodes get – by chance – the same
outcome.

Lemma 2.16. As long as no node sets decided to true, Algorithm 2.15 always
makes progress, independent of which nodes crash.

Proof. The only two steps in the algorithm when a node waits are in Lines 6
and 15. Since a node only waits for a majority of the nodes to send a message,
and since f < n/2, the node will always receive enough messages to continue,
as long as no correct node set its value decided to true and terminates.

xxiv CHAPTER 2. CONSENSUS

Lemma 2.17. Algorithm 2.15 satisfies the validity requirement.

Proof. Observe that the validity requirement of consensus, when restricted to
binary input values, corresponds to: If all nodes start with v, then v must be
chosen; otherwise, either 0 or 1 is acceptable, and the validity requirement is
automatically satisfied.

Assume that all nodes start with v. In this case, all nodes propose v in the
first round. As all nodes only hear proposals for v, all nodes decide for v (Line
17) and exit the loop in the following round.

Lemma 2.18. Algorithm 2.15 satisfies the agreement requirement.

Proof. Observe that proposals for both 0 and 1 cannot occur in the same round,
as nodes only send a proposal for v, if they hear a majority for v in Line 8.

Let u be the first node that decides for a value v in round r. Hence, it
received a majority of proposals for v in r (Line 17). Note that once a node
receives a majority of proposals for a value, it will adapt this value and terminate
in the next round. Since there cannot be a proposal for any other value in r, it
follows that no node decides for a different value in r.

In Lemma 2.16 we only showed that nodes make progress as long as no node
decides, thus we need to be careful that no node gets stuck if u terminates.

Any node u′ 6= u can experience one of two scenarios: Either it also receives
a majority for v in round r and decides, or it does not receive a majority. In
the first case, the agreement requirement is directly satisfied, and also the node
cannot get stuck. Let us study the latter case. Since u heard a majority of
proposals for v, it follows that every node hears at least one proposal for v.
Hence, all nodes set their value vi to v in round r. Therefore, all nodes will
broadcast v at the end of round r, and thus all nodes will propose v in round
r + 1. The nodes that already decided in round r will terminate in r + 1 and
send one additional myValue message (Line 13). All other nodes will receive a
majority of proposals for v in r+ 1, and will set decided to true in round r+ 1,
and also send a myValue message in round r + 1. Thus, in round r + 2 some
nodes have already terminated, and others hear enough myValue messages to
make progress in Line 6. They send another propose and a myValue message
and terminate in r + 2, deciding for the same value v.

Lemma 2.19. Algorithm 2.15 satisfies the termination requirement, i.e., all
nodes terminate in expected time O(2n).

Proof. We know from the proof of Lemma 2.18 that once a node hears a majority
of proposals for a value, all nodes will terminate at most two rounds later. Hence,
we only need to show that a node receives a majority of proposals for the same
value within expected time O(2n).

Assume that no node receives a majority of proposals for the same value.
In such a round, some nodes may update their value to v based on a proposal
(Line 20). As shown before, all nodes that update the value based on a proposal,
adapt the same value v. The rest of the nodes choses 0 or 1 randomly. The
probability that all nodes choose the same value v in one round is hence at
least 1/2n. Therefore, the expected number of rounds is bounded by O(2n). As
every round consists of two message exchanges, the asymptotic runtime of the
algorithm is equal to the number of rounds.

2.4. RANDOMIZED CONSENSUS xxv

Theorem 2.20. Algorithm 2.15 achieves binary consensus with expected run-
time O(2n) if up to f < n/2 nodes crash.

Remarks:

• How good is a fault tolerance of f < n/2?

Theorem 2.21. There is no consensus algorithm for the asynchronous model
that tolerates f ≥ n/2 many failures.

Proof. Assume that there is an algorithm that can handle f = n/2 many fail-
ures. We partition the set of all nodes into two sets N,N ′ both containing n/2
many nodes. Let us look at three different selection of input values: In V0 all
nodes start with 0. In V1 all nodes start with 1. In Vhalf all nodes in N start
with 0, and all nodes in N ′ start with 1.

Assume that nodes start with Vhalf. Since the algorithm must solve consensus
independent of the scheduling of the messages, we study the scenario where
all messages sent from nodes in N to nodes in N ′ (or vice versa) are heavily
delayed. Note that the nodes in N cannot determine if they started with V0 or
Vhalf. Analogously, the nodes in N ′ cannot determine if they started in V1 or
Vhalf. Hence, if the algorithm terminates before any message from the other set
is received, N must decide for 0 and N ′ must decide for 1 (to satisfy the validity
requirement, as they could have started with V0 respectively V1). Therefore,
the algorithm would fail to reach agreement.

The only possibility to overcome this problem is to wait for at least one
message sent from a node of the other set. However, as f = n/2 many nodes
can crash, the entire other set could have crashed before they sent any message.
In that case, the algorithm would wait forever and therefore not satisfy the
termination requirement.

Remarks:

• Algorithm 2.15 solves consensus with optimal fault-tolerance – but it
is awfully slow. The problem is rooted in the individual coin tossing:
If all nodes toss the same coin, they could terminate in a constant
number of rounds.

• Can this problem be fixed by simply always choosing 1 at Line 22?!

• This cannot work: Such a change makes the algorithm deterministic,
and therefore it cannot achieve consensus (Theorem 2.14). Simulating
what happens by always choosing 1, one can see that it might happen
that there is a majority for 0, but a minority with value 1 prevents
the nodes from reaching agreement.

• Nevertheless, the algorithm can be improved by tossing a so-called
shared coin. A shared coin is a random variable that is 0 for all nodes
with constant probability, and 1 with constant probability. Of course,
such a coin is not a magic device, but it is simply an algorithm. To
improve the expected runtime of Algorithm 2.15, we replace Line 22
with a function call to the shared coin algorithm.

xxvi CHAPTER 2. CONSENSUS

2.5 Shared Coin

Algorithm 2.22 Shared Coin (code for node u)

1: Choose local coin cu = 0 with probability 1/n, else cu = 1
2: Broadcast myCoin(cu)

3: Wait for n− f coins and store them in the local coin set Cu
4: Broadcast mySet(Cu)

5: Wait for n− f coin sets
6: if at least one coin is 0 among all coins in the coin sets then
7: return 0
8: else
9: return 1

10: end if

Remarks:

• Since at most f nodes crash, all nodes will always receive n− f coins
respectively coin sets in Lines 3 and 5. Therefore, all nodes make
progress and termination is guaranteed.

• We show the correctness of the algorithm for f < n/3. To simplify
the proof we assume that n = 3f + 1, i.e., we assume the worst case.

Lemma 2.23. Let u be a node, and let W be the set of coins that u received in
at least f + 1 different coin sets. It holds that |W | ≥ f + 1.

Proof. Let C be the multiset of coins received by u. Observe that u receives
exactly |C| = (n−f)2 many coins, as u waits for n−f coin sets each containing
n− f coins.

Assume that the lemma does not hold. Then, at most f coins are in all n−f
coin sets, and all other coins (n− f) are in at most f coin sets. In other words,
the number of total of coins that u received is bounded by

|C| ≤ f · (n− f) + (n− f) · f = 2f(n− f).

Our assumption was that n > 3f , i.e., n−f > 2f . Therefore |C| ≤ 2f(n−f) <
(n− f)2 = |C|, which is a contradiction.

Lemma 2.24. All coins in W are seen by all correct nodes.

Proof. Let w ∈ W be such a coin. By definition of W we know that w is in at
least f + 1 sets received by u. Since every other node also waits for n− f sets
before terminating, each node will receive at least one of these sets, and hence
w must be seen by every node that terminates.

Theorem 2.25. If f < n/3 nodes crash, Algorithm 2.22 implements a shared
coin.

Proof. Let us first bound the probability that the algorithm returns 1 for all
nodes. With probability (1 − 1/n)n ≈ 1/e ≈ 0.37 all nodes chose their local

BIBLIOGRAPHY xxvii

coin equal to 1 (Line 1), and in that case 1 will be decided. This is only a lower
bound on the probability that all nodes return 1, as there are also other scenarios
based on message scheduling and crashes which lead to a global decision for 1.
But a probability of 0.37 is good enough, so we do not need to consider these
scenarios.

With probability 1 − (1 − 1/n)|W | there is at least one 0 in W . Using
Lemma 2.23 we know that |W | ≥ f + 1 ≈ n/3, hence the probability is about
1 − (1 − 1/n)n/3 ≈ 1 − (1/e)1/3 ≈ 0.28. We know that this 0 is seen by all
nodes (Lemma 2.24), and hence everybody will decide 0. Thus Algorithm 2.22
implements a shared coin.

Remarks:

• We only proved the worst case. By choosing f fairly small, it is clear
that f + 1 6≈ n/3. However, Lemma 2.23 can be proved for |W | ≥
n − 2f . To prove this claim you need to substitute the expressions
in the contradictory statement: At most n − 2f − 1 coins can be in
all n− f coin sets, and n− (n− 2f − 1) = 2f + 1 coins can be in at
most f coin sets. The remainder of the proof is analogous, the only
difference is that the math is not as neat. Using the modified Lemma
we know that |W | ≥ n/3, and therefore Theorem 2.25 also holds for
any f < n/3.

• We implicitly assumed that message scheduling was random; if we
need a 0 but the nodes that want to propose 0 are “slow”, nobody is
going to see these 0’s, and we do not have progress.

Theorem 2.26. Plugging Algorithm 2.22 into Algorithm 2.15 we get a ran-
domized consensus algorithm which terminates in a constant expected number
of rounds tolerating up to f < n/3 crash failures.

Chapter Notes

The problem of two friends arranging a meeting was presented and studied under
many different names; nowadays, it is usually referred to as the Two Generals
Problem. The impossibility proof was established in 1975 by Akkoyunlu et
al. [AEH75].

The proof that there is no deterministic algorithm that always solves con-
sensus is based on the proof of Fischer, Lynch and Paterson [FLP85], known
as FLP, which they established in 1985. This result was awarded the 2001
PODC Influential Paper Award (now called Dijkstra Prize). The idea for the
randomized consensus algorithm was originally presented by Ben-Or [Ben83].
The concept of a shared coin was introduced by Bracha [Bra87].

This chapter was written in collaboration with David Stolz.

Bibliography

[AEH75] EA Akkoyunlu, K Ekanadham, and RV Huber. Some constraints and
tradeoffs in the design of network communications. In ACM SIGOPS
Operating Systems Review, volume 9, pages 67–74. ACM, 1975.

xxviii CHAPTER 2. CONSENSUS

[Ben83] Michael Ben-Or. Another advantage of free choice (extended abstract):
Completely asynchronous agreement protocols. In Proceedings of the
second annual ACM symposium on Principles of distributed computing,
pages 27–30. ACM, 1983.

[Bra87] Gabriel Bracha. Asynchronous byzantine agreement protocols. Infor-
mation and Computation, 75(2):130–143, 1987.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM, 32(2):374–
382, 1985.

Chapter 3

Authenticated Agreement

Byzantine nodes are able to lie about their inputs as well as received messages.
Can we detect certain lies and limit the power of byzantine nodes? Possibly,
the authenticity of messages may be validated using signatures?

3.1 Agreement with Authentication

Definition 3.1 (Signature). If a node never signs a message, then no correct
node ever accepts that message. We denote a message msg(x) signed by node u
with msg(x)u.

Remarks:

• Algorithm 3.2 shows an agreement protocol for binary inputs relying
on signatures. We assume there is a designated “primary” node p.
The goal is to decide on p’s value.

Algorithm 3.2 Byzantine Agreement with Authentication

Code for primary p:

1: if input is 1 then
2: broadcast value(1)p
3: decide 1 and terminate
4: else
5: decide 0 and terminate
6: end if

Code for all other nodes v:

7: for all rounds i ∈ 1, . . . , f + 1 do
8: S is the set of accepted messages value(1)u.
9: if |S| ≥ i and value(1)p ∈ S then

10: broadcast S ∪ {value(1)v}
11: decide 1 and terminate
12: end if
13: end for
14: decide 0 and terminate

xxix

xxx CHAPTER 3. AUTHENTICATED AGREEMENT

Theorem 3.3. Algorithm 3.2 can tolerate f < n byzantine failures while ter-
minating in f + 1 rounds.

Proof. Assuming that the primary p is not byzantine and its input is 1, then
p broadcasts value(1)p in the first round, which will trigger all correct nodes
to decide for 1. If p’s input is 0, there is no signed message value(1)p, and no
node can decide for 1.

If primary p is byzantine, we need all correct nodes to decide for the same
value for the algorithm to be correct. Let us assume that p convinces a correct
node v that its value is 1 in round i with i < f + 1. We know that v received
i signed messages for value 1. Then, v will broadcast i+ 1 signed messages for
value 1, which will trigger all correct nodes to also decide for 1. If p tries to
convince some node v late (in round i = f + 1), v must receive f + 1 signed
messages. Since at most f nodes are byzantine, at least one correct node u
signed a message value(1)u in some round i < f + 1, which puts us back to the
previous case.

Remarks:

• The algorithm only takes f + 1 rounds, which is optimal as described
in Theorem ??.

• Using signatures, Algorithm 3.2 solves consensus for any number of
failures! Does this contradict Theorem ??? Recall that in the proof
of Theorem ?? we assumed that a byzantine node can distribute con-
tradictory information about its own input. If messages are signed,
correct nodes can detect such behavior – a node u signing two contra-
dicting messages proves to all nodes that node u is byzantine.

• Does Algorithm 3.2 satisfy any of the validity conditions introduced
in Section ??? No! A byzantine primary can dictate the decision
value. Can we modify the algorithm such that the correct-input va-
lidity condition is satisfied? Yes! We can run the algorithm in parallel
for 2f + 1 primary nodes. Either 0 or 1 will occur at least f + 1 times,
which means that one correct process had to have this value in the
first place. In this case, we can only handle f < n

2 byzantine nodes.

• In reality, a primary will usually be correct. If so, Algorithm 3.2 only
needs two rounds! Can we make it work with arbitrary inputs? Also,
relying on synchrony limits the practicality of the protocol. What if
messages can be lost or the system is asynchronous?

• Zyzzyva uses authenticated messages to achieve state replication, as
in Definition 1.8. It is designed to run fast when nodes run correctly,
and it will slow down to fix failures!

3.2 Zyzzyva

Definition 3.4 (View). A view V describes the current state of a replicated
system, enumerating the 3f + 1 replicas. The view V also marks one of the
replicas as the primary p.

3.2. ZYZZYVA xxxi

Definition 3.5 (Command). If a client wants to update (or read) data, it sends
a suitable command c in a Request message to the primary p. Apart from the
command c itself, the Request message also includes a timestamp t. The client
signs the message to guarantee authenticity.

Definition 3.6 (History). The history h is a sequence of commands c1, c2, . . .
in the order they are executed by Zyzzyva. We denote the history up to ck with
hk.

Remarks:

• In Zyzzyva, the primary p is used to order commands submitted by
clients to create a history h.

• Apart from the globally accepted history, node u may also have a local
history, which we denote as hu or huk .

Definition 3.7 (Complete command). If a command completes, it will remain
in its place in the history h even in the presence of failures.

Remarks:

• As long as clients wait for the completion of their commands, clients
can treat Zyzzyva like one single computer even if there are up to f
failures.

In the Absence of Failures

Algorithm 3.8 Zyzzyva: No failures

1: At time t client u wants to execute command c
2: Client u sends request R = Request(c,t)u to primary p
3: Primary p appends c to its local history, i.e., hp = (hp, c)
4: Primary p sends OR = OrderedRequest(hp, c, R)p to all replicas
5: Each replica r appends command c to local history hr = (hr, c) and checks

whether hr = hp

6: Each replica r runs command ck and obtains result a
7: Each replica r sends Response(a,OR)r to client u
8: Client u collects the set S of received Response(a,OR)r messages
9: Client u checks if all histories hr are consistent

10: if |S| = 3f + 1 then
11: Client u considers command c to be complete
12: end if

Remarks:

• Since the client receives 3f+1 consistent responses, all correct replicas
have to be in the same state.

• Only three communication rounds are required for the command c to
complete.

xxxii CHAPTER 3. AUTHENTICATED AGREEMENT

• Note that replicas have no idea which commands are considered com-
plete by clients! How can we make sure that commands that are
considered complete by a client are actually executed? We will see in
Theorem 3.23.

• Commands received from clients should be ordered according to time-
stamps to preserve the causal order of commands.

• There is a lot of optimization potential. For example, including the en-
tire command history in most messages introduces prohibitively large
overhead. Rather, old parts of the history that are agreed upon can be
truncated. Also, sending a hash value of the remainder of the history
is enough to check its consistency across replicas.

• What if a client does not receive 3f + 1 Response(a,OR)r messages?
A byzantine replica may omit sending anything at all! In practice,
clients set a timeout for the collection of Response messages. Does
this mean that Zyzzyva only works in the synchronous model? Yes
and no. We will discuss this in Lemma 3.26 and Lemma 3.27.

Byzantine Replicas

Algorithm 3.9 Zyzzyva: Byzantine Replicas (append to Algorithm 3.8)

1: if 2f + 1 ≤ |S| < 3f + 1 then
2: Client u sends Commit(S)u to all replicas
3: Each replica r replies with a LocalCommit(S)r message to u
4: Client u collects at least 2f + 1 LocalCommit(S)r messages and considers

c to be complete
5: end if

Remarks:

• If replicas fail, a client u may receive less than 3f + 1 consistent re-
sponses from the replicas. Client u can only assume command c to
be complete if all correct replicas r eventually append command c to
their local history hr.

Definition 3.10 (Commit Certificate). A commit certificate S contains 2f + 1
consistent and signed Response(a,OR)r messages from 2f + 1 different replicas
r.

Remarks:

• The set S is a commit certificate which proves the execution of the
command on 2f + 1 replicas, of which at least f + 1 are correct. This
commit certificate S must be acknowledged by 2f + 1 replicas before
the client considers the command to be complete.

• Why do clients have to distribute this commit certificate to 2f + 1
replicas? We will discuss this in Theorem 3.21.

3.2. ZYZZYVA xxxiii

• What if |S| < 2f + 1, or what if the client receives 2f + 1 messages
but some have inconsistent histories? Since at most f replicas are
byzantine, the primary itself must be byzantine! Can we resolve this?

Byzantine Primary

Definition 3.11 (Proof of Misbehavior). Proof of misbehavior of some node
can be established by a set of contradicting signed messages.

Remarks:

• For example, if a client u receives two Response(a,OR)r messages that
contain inconsistent OR messages signed by the primary, client u can
prove that the primary misbehaved. Client u broadcasts this proof of
misbehavior to all replicas r which initiate a view change by broad-
casting a IHatePrimaryr message to all replicas.

Algorithm 3.12 Zyzzyva: Byzantine Primary (append to Algorithm 3.9)

1: if |S| < 2f + 1 then
2: Client u sends the original R = Request(c,t)u to all replicas
3: Each replica r sends a ConfirmRequest(R)r message to p
4: if primary p replies with OR then
5: Replica r forwards OR to all replicas
6: Continue as in Algorithm 3.8, Line 5
7: else
8: Replica r initiates view change by broadcasting IHatePrimaryr to all

replicas
9: end if

10: end if

Remarks:

• A faulty primary can slow down Zyzzyva by not sending out the
OrderedRequest messages in Algorithm 3.8, repeatedly escalating to
Algorithm 3.12.

• Line 5 in the Algorithm is necessary to ensure liveness. We will discuss
this in Theorem 3.27.

• Again, there is potential for optimization. For example, a replica
might already know about a command that is requested by a client. In
that case, it can answer without asking the primary. Furthermore, the
primary might already know the message R requested by the replicas.
In that case, it sends the old OR message to the requesting replica.

Safety

Definition 3.13 (Safety). We call a system safe if the following condition holds:
If a command with sequence number j and a history hj completes, then for any
command that completed earlier (with a smaller sequence number i < j), the
history hi is a prefix of history hj.

xxxiv CHAPTER 3. AUTHENTICATED AGREEMENT

Remarks:

• In Zyzzyva a command can only complete in two ways, either in Al-
gorithm 3.8 or in Algorithm 3.9.

• If a system is safe, complete commands cannot be reordered or drop-
ped. So is Zyzzyva so far safe?

Lemma 3.14. Let ci and cj be two different complete commands. Then ci and
cj must have different sequence numbers.

Proof. If a command c completes in Algorithm 3.8, 3f + 1 replicas sent a
Response(a,OR)r to the client. If the command c completed in Algorithm 3.9,
at least 2f + 1 replicas sent a Response(a,OR)r message to the client. Hence, a
client has to receive at least 2f + 1 Response(a,OR)r messages.

Both ci and cj are complete. Therefore there must be at least 2f+1 replicas
that responded to ci with a Response(a,OR)r message. But there are also at least
2f + 1 replicas that responded to cj with a Response(a,OR)r message. Because
there are only 3f + 1 replicas, there is at least one correct replica that sent a
Response(a,OR)r message for both ci and cj . A correct replica only sends one
Response(a,OR)r message for each sequence number, hence the two commands
must have different sequence numbers.

Lemma 3.15. Let ci and cj be two complete commands with sequence numbers
i < j. The history hi is a prefix of hj.

Proof. As in the proof of Lemma 3.14, there has to be at least one correct replica
that sent a Response(a,OR)r message for both ci and cj .

A correct replica r that sent a Response(a,OR)r message for ci will only
accept cj if the history for cj provided by the primary is consistent with the
local history of replica r, including ci.

Remarks:

• A byzantine primary can cause the system to never complete any
command. Either by never sending any messages or by inconsistently
ordering client requests. In this case, replicas have to replace the
primary.

View Changes

Definition 3.16 (View Change). In Zyzzyva, a view change is used to replace
a byzantine primary with another (hopefully correct) replica. View changes are
initiated by replicas sending IHatePrimaryr to all other replicas. This only
happens if a replica obtains a valid proof of misbehavior from a client or after a
replica fails to obtain an OR message from the primary in Algorithm 3.12.

3.2. ZYZZYVA xxxv

Remarks:

• How can we safely decide to initiate a view change, i.e. demote a
byzantine primary? Note that byzantine nodes should not be able to
trigger a view change!

Algorithm 3.17 Zyzzyva: View Change Agreement

1: All replicas continuously collect the set H of IHatePrimaryr messages
2: if a replica r received |H| > f messages or a valid ViewChange message

then
3: Replica r broadcasts ViewChange(Hr,hr,Srl)r
4: Replica r stops participating in the current view
5: Replica r switches to the next primary “p = p+ 1”
6: end if

Remarks:

• The f + 1 IHatePrimaryr messages in set H prove that at least one
correct replica initiated a view change. This proof is broadcast to all
replicas to make sure that once the first correct replica stopped acting
in the current view, all other replicas will do so as well.

• Srl is the most recent commit certificate that the replica obtained
in the ending view as described in Algorithm 3.9. Srl will be used
to recover the correct history before the new view starts. The local
histories hr are included in the ViewChange(Hr,hr,Srl)r message such
that commands that completed after a correct client received 3f + 1
responses from replicas can be recovered as well.

• In Zyzzyva, a byzantine primary starts acting as a normal replica after
a view change. In practice, all machines eventually break and rarely
fix themselves after that. Instead, one could consider to replace a
byzantine primary with a fresh replica that was not in the previous
view.

Algorithm 3.18 Zyzzyva: View Change Execution

1: The new primary p collects the set C of ViewChange(Hr,hr,Srl)r messages
2: if new primary p collected |C| ≥ 2f + 1 messages then
3: New primary p sends NewView(C)p to all replicas
4: end if

5: if a replica r received a NewView(C)p message then
6: Replica r recovers new history hnew as shown in Algorithm 3.20
7: Replica r broadcasts ViewConfirm(hnew)r message to all replicas
8: end if

9: if a replica r received 2f + 1 ViewConfirm(hnew)r messages then
10: Replica r accepts hr = hnew as the history of the new view
11: Replica r starts participating in the new view
12: end if

xxxvi CHAPTER 3. AUTHENTICATED AGREEMENT

Remarks:

• Analogously to Lemma 3.15, commit certificates are ordered. For two
commit certificates Si and Sj with sequence numbers i < j, the history
hi certified by Si is a prefix of the history hj certified by Sj .

• Zyzzyva collects the most recent commit certificate and the local his-
tory of 2f + 1 replicas. This information is distributed to all replicas,
and used to recover the history for the new view hnew.

• If a replica does not receive the NewView(C)p or the ViewConfirm(hnew)r
message in time, it triggers another view change by broadcasting
IHatePrimaryr to all other replicas.

• How is the history recovered exactly? It seems that the set of histo-
ries included in C can be messy. How can we be sure that complete
commands are not reordered or dropped?

commands up to Sl︷ ︸︸ ︷ ≥ f + 1 consistent histories︷ ︸︸ ︷

︷
︸︸

︷

︸ ︷︷ ︸
discarded commands

Inconsistent or missing commands

Consistent commands

Consistent commands with commit certificate

︷
︸︸

︷
︷
︸︸

︷
︷︸
︸︷

f
+

1
co

rr
ec

t
re

p
li

ca
s

f
o
th

er
re

p
li

ca
s

︸ ︷︷ ︸
hnew

< f + 1 consistent histories︷ ︸︸ ︷

Figure 3.19: The structure of the data reported by different replicas in C.
Commands up to the last commit certificate Sl were completed in either Algo-
rithm 3.8 or Algorithm 3.9. After the last commit certificate Sl there may be
commands that completed at a correct client in Algorithm 3.8. Algorithm 3.20
shows how the new history hnew is recovered such that no complete commands
are lost.

3.2. ZYZZYVA xxxvii

Algorithm 3.20 Zyzzyva: History Recovery

1: C = set of 2f + 1 ViewChange(Hr,hr,Sr)r messages in NewView(C)p
2: R = set of replicas included in C
3: Sl = most recent commit certificate Srl reported in C
4: hnew = history hl contained in Sl
5: k = l + 1, next sequence number
6: while command ck exists in C do
7: if ck is reported by at least f + 1 replicas in R then
8: Remove replicas from R that do not support ck
9: hnew = (hnew, ck)

10: end if
11: k = k + 1
12: end while
13: return hnew

Remarks:

• Commands up to Sl are included into the new history hnew.

• If at least f+1 replicas share a consistent history after the last commit
certificate Sl, also the commands after that are included.

• Even if f + 1 correct replicas consistently report a command c after
the last commit certificate Sl, c may not be considered complete by
a client, e.g., because one of the responses to the client was lost.
Such a command is included in the new history hnew. When the
client retries executing c, the replicas will be able to identify the same
command c using the timestamp included in the client’s request, and
avoid duplicate execution of the command.

• Can we be sure that all commands that completed at a correct client
are carried over into the new view?

Lemma 3.21. The globally most recent commit certificate Sl is included in C.

Proof. Any two sets of 2f+1 replicas share at least one correct replica. Hence, at
least one correct replica which acknowledged the most recent commit certificate
Sl also sent a LocalCommit(Sl)r message that is in C.

Lemma 3.22. Any command and its history that completes after Sl has to be
reported in C at least f + 1 times.

Proof. A command c can only complete in Algorithm 3.8 after Sl. Hence, 3f+1
replicas sent a Response(a,OR)r message for c. C includes the local histories of
2f + 1 replicas of which at most f are byzantine. As a result, c and its history
is consistently found in at least f + 1 local histories in C.

Lemma 3.23. If a command c is considered complete by a client, command c
remains in its place in the history during view changes.

Proof. We have shown in Lemma 3.21 that the most recent commit certificate
is contained in C, and hence any command that terminated in Algorithm 3.9

xxxviii CHAPTER 3. AUTHENTICATED AGREEMENT

is included in the new history after a view change. Every command that com-
pleted before the last commit certificate Sl is included in the history as a result.
Commands that completed in Algorithm 3.8 after the last commit certificate
are supported by at least f + 1 correct replicas as shown in Lemma 3.22. Such
commands are added to the new history as described in Algorithm 3.20. Algo-
rithm 3.20 adds commands sequentially until the histories become inconsistent.
Hence, complete commands are not lost or reordered during a view change.

Theorem 3.24. Zyzzyva is safe even during view changes.

Proof. Complete commands are not reordered within a view as described in
Lemma 3.15. Also, no complete command is lost or reordered during a view
change as shown in Lemma 3.23. Hence, Zyzzyva is safe.

Remarks:

• So Zyzzyva correctly handles complete commands even in the presence
of failures. We also want Zyzzyva to make progress, i.e., commands
issued by correct clients should complete eventually.

• If the network is broken or introduces arbitrarily large delays, com-
mands may never complete.

• Can we be sure commands complete in periods in which delays are
bounded?

Definition 3.25 (Liveness). We call a system live if every command eventually
completes.

Lemma 3.26. Zyzzyva is live during periods of synchrony if the primary is
correct and a command is requested by a correct client.

Proof. The client receives a Response(a,OR)r message from all correct replicas.
If it receives 3f + 1 messages, the command completes immediately in Algo-
rithm 3.8. If the client receives fewer than 3f + 1 messages, it will at least
receive 2f + 1, since there are at most f byzantine replicas. All correct replicas
will answer the client’s Commit(S)u message with a correct LocalCommit(S)r
message after which the command completes in Algorithm 3.9.

Lemma 3.27. If, during a period of synchrony, a request does not complete in
Algorithm 3.8 or Algorithm 3.9, a view change occurs.

Proof. If a command does not complete for a sufficiently long time, the client
will resend the R = Request(c,t)u message to all replicas. After that, if a
replica’s ConfirmRequest(R)r message is not answered in time by the primary,
it broadcasts an IHatePrimaryr message. If a correct replica gathers f + 1
IHatePrimaryr messages, the view change is initiated. If no correct replica col-
lects more than f IHatePrimaryr messages, at least one correct replica received
a valid OrderedRequest(hp, c, R)p message from the primary which it forwards
to all other replicas. In that case, the client is guaranteed to receive at least
2f + 1 Response(a,OR)r messages from the correct replicas and can complete
the command by assembling a commit certificate.

BIBLIOGRAPHY xxxix

Remarks:

• If the newly elected primary is byzantine, the view change may never
terminate. However, we can detect if the new primary does not assem-
ble C correctly as all contained messages are signed. If the primary
refuses to assemble C, replicas initiate another view change after a
timeout.

Chapter Notes

Algorithm 3.2 was introduced by Dolev et al. [DFF+82] in 1982. Byzantine
fault tolerant state machine replication (BFT) is a problem that gave rise to
various protocols. Castro and Liskov [MC99] introduced the Practical Byzantine
Fault Tolerance (PBFT) protocol in 1999, applications such as Farsite [ABC+02]
followed. This triggered the development of, e.g., Q/U [AEMGG+05] and HQ
[CML+06]. Zyzzyva [KAD+07] improved on performance especially in the case
of no failures, while Aardvark [CWA+09] improved performance in the presence
of failures. Guerraoui at al. [GKQV10] introduced a modular system which
allows to more easily develop BFT protocols that match specific applications in
terms of robustness or best case performance.

This chapter was written in collaboration with Pascal Bissig.

Bibliography

[ABC+02] Atul Adya, William J. Bolosky, Miguel Castro, Gerald Cermak,
Ronnie Chaiken, John R. Douceur, Jon Howell, Jacob R. Lorch,
Marvin Theimer, and Roger P. Wattenhofer. Farsite: Federated,
available, and reliable storage for an incompletely trusted en-
vironment. SIGOPS Oper. Syst. Rev., 36(SI):1–14, December
2002.

[AEMGG+05] Michael Abd-El-Malek, Gregory R Ganger, Garth R Goodson,
Michael K Reiter, and Jay J Wylie. Fault-scalable byzantine
fault-tolerant services. ACM SIGOPS Operating Systems Re-
view, 39(5):59–74, 2005.

[CML+06] James Cowling, Daniel Myers, Barbara Liskov, Rodrigo Ro-
drigues, and Liuba Shrira. Hq replication: A hybrid quorum
protocol for byzantine fault tolerance. In Proceedings of the 7th
Symposium on Operating Systems Design and Implementation,
OSDI ’06, pages 177–190, Berkeley, CA, USA, 2006. USENIX
Association.

[CWA+09] Allen Clement, Edmund L Wong, Lorenzo Alvisi, Michael
Dahlin, and Mirco Marchetti. Making byzantine fault tolerant
systems tolerate byzantine faults. In NSDI, volume 9, pages
153–168, 2009.

[DFF+82] Danny Dolev, Michael J Fischer, Rob Fowler, Nancy A Lynch,
and H Raymond Strong. An efficient algorithm for byzantine

xl CHAPTER 3. AUTHENTICATED AGREEMENT

agreement without authentication. Information and Control,
52(3):257–274, 1982.

[GKQV10] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko
Vukolić. The next 700 bft protocols. In Proceedings of the 5th Eu-
ropean conference on Computer systems, pages 363–376. ACM,
2010.

[KAD+07] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen
Clement, and Edmund Wong. Zyzzyva: speculative byzantine
fault tolerance. In ACM SIGOPS Operating Systems Review,
volume 41, pages 45–58. ACM, 2007.

[MC99] Barbara Liskov Miguel Castro. Practical byzantine fault toler-
ance. In OSDI, volume 99, pages 173–186, 1999.

