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eCash scenario & requirements

User

Bank

Merchant

Deposit

Withdrawal

Spend

Requirements
● Anonymity:  Withdrawal and Deposit must be unlinkable
● No Double Spending: Coin is bit-strings, can be spend twice
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Towards a Solution: do it like paper money

User

Bank

Merchant

Deposit

Withdrawal

Spend

# Sign notes with digital signature scheme 
– Note = (serial number #, value)
– Secure because 

• signature scheme can not be forged
• bank will accepts some serial number only once  on-line e-cash→

– Not anonymous because (cf. paper solution)
• bit-string of signature is unique
• serial number is unique

100

100 100
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Towards a Solution

User

Bank

Merchant

Deposit

Withdrawal

Spend

# Use (more) cryptography
– Hide serial number from bank when issuing 

• e.g., sign commitment of serial number
– Reveal serial number and proof 

• knowledge of signature on 
• commitment to serial number

– Anonymous because of commitments scheme and zero-knowledge proof

100

100
100

100 100
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How to implement this?

Encryption
Schemes

Signature
Schemes

Commitment
Schemes

Zero-Knowledge 
Proofs

..... challenge is to do all this efficiently!
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mathematical setting
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Abelian Groups

A set G with operation ▫ is called a group if:
– closure 

for all a,b, in G  a → ▫ b in G
– commutativity

for all a,b, in G  a → ▫ b = b  ▫ a 
– associativity

for all a,b,c, in G  (a → ▫ b) ▫ c = a ▫ (b ▫ c)
– identity

there exist some e in G, s.t. for all a:  a ▫ e = a 
– invertibility

for all a in G, there exist a-1 in G:  a ▫ a-1 = e

# Example:
integers under addition (Z,+)={...,-2,-1,0,1,2,...} or (Zn,+) = {0,1,2,...,n-1}
identity: e =  0 
inverse: a-1 =  - a 
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Cyclic Groups

# exponentiation = repeated application of  ∙ , e.g., a3  = a ∙ a ∙ a 
               

# a group is cyclic if every element is power of some fixed element:
– i.e., for each a in G, there is unique i such that  gi = a
– g = generator of the group
– define g0= 1 = identity element

G = <g> = {1=g0, g1, g2, ..., ., gq-1}
– q = |G|= order of group

if q is a prime number then G is cyclic
 → computation in exponents can be done modulo q:

gi= gi mod q 

# computing with exponents: 

gi+j =  gi  ∙ gj gi-j =  gi  / gj   =  gi  ∙ (gj )-1 

 gij  = (gi)j g-i  = (g-1)i =  (gi)-1
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The Discrete Logarithm Problem

given g and x  it is easy to compute  gx, g1/x, ....

given gx and gy  it is easy to compute gx gy = gx+y 

Discrete Log Assumption

 given gx   it is hard to compute x 

Diffie-Hellman Assumption

 given gx and gy  it is hard to compute gxy 

Decisional Diffie-Hellman Assumption

 given gx, gy, and gz   it is hard to decide if gz = gxy 
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commitment scheme
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m

m, 2-36-17 m є 
?

mmm

mmm

Commitment Scheme: Functionality
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m, 2-36-17

m', 3-21-11
m' є 

?
mmm

m  є 
?

mmm

Binding

Commitment Scheme: Security
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m, 2-36-17

m', 3-21-11
m' є 

?
mmm

m  є 
?

mmm

Binding

Commitment Scheme: Security
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Hiding: for all message m, 
m'

m
'

m

mmm
'

mmm

Commitment Scheme: Security
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Hiding: for all message m, 
m'

m
'

m

mmm
'

mmm

mmm
'

mmm

m
'

m ?

Commitment Scheme: Security
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Commitment Schemes

Group G = <g> = <h> of order q

To commit to element x Є Zq:

• Pedersen: perfectly hiding, computationally binding 
choose r Є Zq     and compute c = gxhr

• ElGamal: computationally hiding, perfectly binding:
choose r Є Zq     and compute c = (gxhr, gr)

To open commitment:
• reveal x and r to verifier
• verifier checks if c = gxhr 
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Pedersen's Scheme:

Choose r Є Zq     and compute c = gxhr

   
Perfectly hiding:
Let c be a commitment and  u= logg h 

Thus c = gxhr = gx+ur =  g(x+ur')+u(r-r') 

     = gx+ur'hr-r'            for any r'! 

I.e., given c and x' here exist r'  such that c = gx'hr' 

Computationally binding:
Let c, (x', r')  and (x, r)  s.t. c  = gx'hr' = gxhr 

Then  gx'-x = hr-r' and  u = logg h =  (x'-x)/(r-r') mod q

Pedersen's Commitment Scheme
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Proof 
m
 

true

m

Proof
  m = 2 •m' 

m, m' 

true

m m
'

Proof of Knowledge of Contents

Proof of Relations among Contents

Commitment Scheme: Extended Features
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Proof 
m
 

true

m

Proof
  m = 2 •m' 

m, m' 

true

m m
'

Commitment Scheme: Extended Features

Let C1 = gmhr and C' = gm'hr then:

PK{(α,β):   C = gβhα }

PK{(α,β,γ):    C' = gβhα  ⋀  C = (g2)βhγ }
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zero-knowledge proofs
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Zero-Knowledge Proofs

# interactive proof between a prover and a verifier about the prover's knowledge

# properties:
  zero-knowledge

verifier learns nothing about the prover's secret
  proof of knowledge (soundness)

prover can convince verifier only if she knows the secret
  completeness

if prover knows the secret she can always convince the verifier

Commitment

Challenge
Response
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Given group <g> and element y Є <g> .

Prover wants to convince verifier that she knows x s.t. y = gx

such that verifier only learns y and g.

t = gs yc ? 

Prover:

random r 
t := gr 

 Verifier: 

random c

s := r - cx 

t

s

c

notation: PK{(α):  y = gα }

Zero Knowledge Proofs of Knowledge of Discrete Logarithms             

y, gx 
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Zero Knowledge Proofs: Security            

Proof of Knowledge Property:
If prover is successful with non-negl. probability, then she “knows” x = log g y , 

i.e., ones can extract x from her.

Assume c ∈ {0,1}k and consider execution tree:

      c = 0      c = 2k-1
..
.. x x x x

If success probability for any prover (including malicious ones) 

is >2
-k

 then there are two accepting tuples (t,c1,s1) and 
(t,c2,s2) for the same t.  
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Zero Knowledge Proofs: Security            

Prover might do protocol computation in any way it wants & we cannot analyse code.
Thought experiment: 
# Assume we have prover as a black box  we can reset and rerun prover→

# Need to show how secret can be extracted via protocol interface

t

s
c

t

s'
c'

t = gs yc  = gs' yc'  → yc'-c  = gs-s'           

→ y = g(s-s')/(c'-c)     

→           x = (s-s')/(c'-c)  mod q

x x
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Zero Knowledge Proofs: Security            

Zero-knowledge property:
If verifier does not learn anything (except the fact that Alice knows x = log g y )

Idea: One can simulate whatever Bob “sees”.

t

s
c

Choose random c', s' 
compute t := gs' yc' 

if  c  = c' send s' = s , 
otherwise restart

Problem: if domain of c too large, success probability becomes too small
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One way to modify protocol to get large domain c:

t = gs yc ? 

Prover:

random r 
t := gr 

 Verifier: 

random c,v 
h := H(c,v)

h := H(c,v) ?
s := r - cx 

t

s

h

c,v

notation: PK{(α):  y = gα }

Zero Knowledge Proofs: Security            

y, gx 
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Zero Knowledge Proofs: Security            

One way to modify protocol to get large domain c:

t

h

Choose random c', s' 
compute t' := gs' yc' 

after having received c “reboot” 
verifier 

Choose random s
compute t := gs yc 

send s 

s

t'

   h

c,v 

c,v
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From Protocols To Signatures

Signing a message m:
- chose random  r Є Zq and 
- compute c := H(gr||m)  = H(t||m) 

s := r - cx   mod (q) 
- output             (c,s)   

Verifying a signature  (c,s) on a message m:
- check c = H(gs yc||m) ?     ↔  t = gs yc  ? 

Security:
- underlying protocol is zero-knowledge proof of knowledge
- hash function H(.) behaves as a “random oracle.”

Signature SPK{(α):  y = gα }(m):
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Zero Knowledge Proofs of Knowledge of Discrete Logarithms

Logical combinations:

PK{(α,β):   y = gα  ∧  z = gβ  ∧  u = gβhα }
PK{(α,β):   y = gα  ∨  z = gβ  }

Non-interactive (Fiat-Shamir heuristic, Schnorr Signatures):   
 PK{(α):  y = gα }(m)

Many Exponents:

PK{(α,β,γ,δ):   y = gα hβzγkδuβ }

Intervals and groups of different order  (under SRSA):
PK{(α):  y = gα  ∧ α  Є [A,B] }  

PK{(α):  y = gα  ∧  z = gα  ∧ α Є [0,min{ord(g),ord(g)}] }  
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Some Example Proofs and Their Analysis

Let  g, h, C1, C2, C3 be group elements.

Now, what does 
     PK{(α1,β1,α2,β2, α3, β3):    C1= gα1hβ1  ∧   C2= gα2hβ2 ∧   C3 =gα3hβ3∧ C3 = gα1gα2hβ3 } 

mean?

 → Prover knows values α1, β1, α2, β2, β3 such that  

         C1= gα1hβ1     ,  C2=  gα2hβ2  and  

 C3 = gα1gα2hβ3 = gα1 + α2 hβ3 = g α3 hβ3

 α3 = a1 + a2   (mod q)

And what about:
PK{(α1,...,β3):    C1= gα1hβ1  ∧   C2= gα2hβ2 ∧  C3 =gα3hβ3   C3∧  = gα1 (g5)α2hβ3 } 

  → C3 = gα1gα2hβ3 = gα1 + 5 α2 hβ3

 α3 = a1 + 5 a2    (mod q)
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Some Example Proofs and Their Analysis

Let  g, h, C1, C2, C3 be group elements.

Now, what does 
PK{(α1,..,β3):    C1= gα1hβ1  ∧   C2= gα2hβ2 ∧  C3 =gα3hβ3  ∧  C3 = C2α1hβ3 } mean?

 → Prover knows values α1, β1, α2, β2, β3 such that  

         C1= gα1hβ1     ,  C2=  gα2hβ2  and  

 C3 =   C2α1hβ3 = (gα2hβ2)α1hβ3  = gα2·α1hβ3+β2·α1 

          C3 = gα2·α1 hβ3+β2·α1  = gα3 hβ3' 

  a3 = a1 · a2   (mod q) 

And what about
PK{(α1,β1 β2):    C1= gα1hβ1  ∧    C2= gα2hβ2  ∧  C2 = C1α1hβ2 }     

  → a2 = a12  (mod q)
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Some Example Proofs and Their Analysis

Let  g, h, C1, C2, C3 be group elements.

Now, what does 
PK{(α1,..,β2):     C1= gα1hβ1  ∧  C2= gα2hβ2  ∧   g = (C2/C1)α1hβ2 } mean?

 → Prover knows values α, β1, β2  such that  

         C1= gα1hβ1    

  g = (C2/C1)α1hβ2 = (C2 g-α1h-β1)α1 hβ2 

 →  g1/α1 = C2 g-α1h-β1  hβ2/α1 

          C2 = gα1 hβ1  h-β2/α1 g1/α1 = gα1 + 1/α1 hβ1-β2/α1  

 C2 = gα2 hβ2

 α2  = α1 + a1-1  (mod q)
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signature schemes
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Signature Scheme: Functionality

Key Generation



© 2016 IBM Corporation May 30, 2016

Signature Scheme: Functionality

(m1,..., mk)

σ = sig((m1,..., mk),   ) 

Signing
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Signature Scheme: Functionality

(m1,..., mk)

σ = sig((m1,..., mk),   ) 

Verification

σ

ver(σ,(m1,..., mk),   ) = true
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Signature Scheme: Security

m1
σ1

Unforgeability under Adaptive
Chosen Message Attack
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Signature Scheme: Security

m1
σ1

ml
σl

Unforgeability under Adaptive
Chosen Message Attack
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Signature Scheme: Security

m1
σ1

ml
σl

σ' and m'≠ mi s.t. 
ver(σ', m',    ) = true

Unforgeability under Adaptive
Chosen Message Attack
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Signature Scheme: Security

m1
σ1

ml
σl

σ' and m'≠ mi s.t. 
ver(σ', m',    ) = true

Unforgeability under Adaptive
Chosen Message Attack
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signature schemes with protocols
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(      ,... ,      , mj+1,..., mk)

σ

ver(σ,(m1,..., mk),   ) = true

σ = sig(((      ,... ,      , mj+1,..., mk),   ) 

Verification remains unchanged!
Security requirements basically the same, but 

• Signer should not learn any information about m1, ..., mj
• Forgery w.r.t. message clear parts and opening of commitments

mmmjmmm1

mmm1 mmmj

Signature Scheme: Signing Hidden Messages
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σ on (m1,..., mk)

Proving Possession of a Signature
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{mi | i є S}  

σ on (m1,..., mk)

Proving Possession of a Signature
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{mi | i є S}, 
Proof 

protocol

σ, {mi | i є S}  

true

/

Proving Possession of a Signature

Variation: 
● Send also    mi   to verifier and
● Prove that committed messages are signed
● Prove properties about hidden/committed mi

{mi | i є S}  

σ on (m1,..., mk)
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Blind Signatures vs  Signatures with Protocols

can be used multiple times

Damgaard,Camenisch&Lysyanskaya

Strong RSA, DL-ECC,..

can be used only once

Chaum, Brands, et al.

Discrete Logs, RSA,..
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Some signature schemes
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RSA Signature Scheme – For Reference 

Rivest, Shamir, and Adlemann 1978

Secret Key: two random primes p and q
Public Key: n := pq, prime e, 

and collision-free hash function
 H: {0,1}* -> {0,1}ℓ

Computing signature on a message  m Є {0,1}*
 d := 1/e mod (p-1)(q-1)

 s := H(m) d  mod n 

Verification of signature s on a message  m Є {0,1}*

 se = H(m)      (mod n)

Correctness: se   = (H(m)d)e  = H(m)d·e = H(m)    (mod n)  
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RSA Signature Scheme – for reference 

Verification signature on a message  m Є {0,1}*
              se := H(m)      (mod n)

Wanna do proof of knowledge of signature on a message, e.g.,
 PK{ (m,s):  se = H(m)  (mod n) }

But this is not a valid proof expression!!!! :-( 
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Public key of signer: RSA modulus n and ai, b, d  Є QRn,  

Secret key: factors of n 

To sign k messages m1, ..., mk Є {0,1}ℓ :
● choose random prime  2ℓ+2 > e > 2ℓ+1  and integer  s ≈ n
● compute c :

         c = (d / (a1
m1·...· ak

mk  bs ))1/e mod n

● signature is (c,e,s)

CL-Signature Scheme
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To verify a signature (c,e,s) on messages m1, ..., mk:
● m1, ..., mk Є {0,1}ℓ:
● e > 2ℓ+1 

● d =  ce a1
m1·...· ak

mk  bs  mod n

Theorem: Signature scheme is secure against adaptively 
chosen message attacks under Strong RSA assumption.

CL-Signature Scheme
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Sign blindly with CL signatures

(      ,... ,      , mj+1,..., mk)mmmjmmm1

σ

σ = sig(((      ,... ,      , mj+1,..., mk),   ) mmm1 mmmj

Choose e,s”

c = (d/(C a3
m3 bs”))1/e  mod n

C = a1
m1a2

m2 bs’
C + PK{(m1,m2,s’): C = a1

m1a2
m2 bs’}

(c,e,s’’)

d =  ce a1
m1a2

m2a3
m3  bs’+s’’  mod n
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Recall: d =  ce a1m1a2m2 bs  mod n

Observe:
#Let c' = c btmod n with randomly chosen t 
#Then  d = c'e a1m1a2m2 bs-et  (mod n), i.e.,

(c',e, s* = s-et) is also signature on m1 and m2

To prove knowledge of signature (c',e, s*)  on m2 and some m1 
#provide c'  
#PK{(ε, µ1, σ) :   d/a2m2 :=  c'ε a1µ1 b σ ∧  µ Є {0,1}ℓ ∧  ε > 2ℓ+1 }

 → proves d :=  c'ε a1µ1 a2m2b σ

Proving Knowledge of a CL-signature
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Realizing On-Line eCash
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Recall basic idea

User

Bank

Merchant

Deposit

Withdrawal

Spend

# Issue coin: Hide serial number from bank when issuing 
– sign commitment of random serial number

# Spend coin: reveal serial number and proof 
– knowledge of signature on 
– commitment to serial number

100

100
100

100 100
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On-line E-cash: Withdrawal

choose random #, s' 

and compute

C = a1
# bs'

C + p
roo

f 

Choose e,s”

c = (d/(C bs”))1/e  mod n

(c,e,s”+s')  s.t.

d =   ce a1
# bs” + s'   (mod n)

(c,e,s”)
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On-line E-cash: Payment

(c,e,s”+s')  s.t.

d =   ce a1
# bs” + s'   (mod n)

#, c', proofcompute 
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) :    d / a1

#=  c'ε b σ (mod n)  }
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On-line E-cash: Payment

(c,e,s”+s')  s.t.

d =   ce a1
# bs” + s'   (mod n)

compute 
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) :    d / a1

#=  c'ε b σ (mod n)  }

#, c', proof

#
, c

', 
pr

oo
f # Є L?

OK/ not OK
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Security

# Anonymity
– Bank does not learn # during withdrawal
– Bank & Shop do not learn c, e when spending

#, c', proof
#

, c
', 

pr
oo

f # Є L?

OK/ not OK

C + p
roo

f 

(c,e,s”)
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Security

Double Spending:

#Spending = Compute 
–c' = c bs'mod n
–proof = PK{(ε, µ, ρ, σ) :    d / a1

#=  c'ε b σ (mod n)  }

#Can use the same # only once....
– If more #'s are presented than withdrawals:

•  Proofs would not sound
•  Signature scheme would not secure
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Realizing Off-Line eCash
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Recall On-Line E-Cash 

On-Line Solution:
1. Coin = random serial # (chosen by user) signed by Bank 
2. Banks signs blindly
3. Spending by sending # and prove knowledge of 
    signature to Merchant
4. Merchant checks validy w/ Bank
5. Bank accepts each serial # only once.

Off-Line:
- Can check serial # only after the fact
- … but at that point user will have been disappeared...

100

100
100
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Towards off-line signatures

100

100

100

Not Linkable

Li
nk

ab
le

Seems like a paradox, but crypto is all about solving paradoxical problems :-)

Goal:
–spending coin once: OK
–spending coin twice: anonymity revoked

Not Linkable
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Off-line E-cash

Main Idea: 
–Include #, id, r
–Upon spending: 

reveal #, and t = id + r u, 
with c randomly chosen by merchant 

– t won't reveal anything about id!
–However, given two equations (for the same #, id, r)

 t1 = id + r u1
 t2 = id + r u2
one can solve for id.
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Off-line E-cash: Withdrawal

choose random #, r, s' 

and compute

C = a1
#a2

r bs'

C + p
roof 

d = ce C a3
nym bs”  mod n

(c,e,s”+s')  s.t.

d =   ce a1
#a2

r a3
nym  bs” + s'   (mod n)

(c,e,s”)
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Off-line E-cash: Payment

(c,e,s”+s')  s.t.

d =   ce a1
#a2

r a3
nym  bs” + s'   (mod n)

choose random u

u

compute 
t = r + u nym mod q
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) :   

 d / a1
#=  c'ε a2

ρa3
µ b σ (mod n)  ⋀  gt = gρ (gu)µ }

t, #, c', proof

Let G=<g> be a group of order q
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Off-line E-cash: Payment

PK{(ε, µ, ρ, σ) :    
d / a1

#=  c'ε a2
ρa3

µ b σ (mod n) ⋀  gt = gρ (gu)µ }

1.  d = c'ε  a1
# a2

ρa3
µ b σ  (mod n)

=>  (c', ε, σ)    is a signature on (#, µ, ρ) 

2. gt = gρ+uµ  

=>  t = ρ + u µ  mod q, 
i.e., t was computed correctly!
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Off-line E-cash: Deposit

u, t, #, 
proof

# Є L?  
If so: 1.  t = ρ + u µ (mod q)

2. t' = ρ + u' µ (mod q)

solve for ρ and µ.
=> µ = nym  because of proof
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Off-line E-cash: Security

# Unforgeable: 
–no more coins than #'s, 

• otherwise one can forge signatures 
• or proofs are not sound

–if coins with same # appears with different u's => reveals nym

# Anonymity:
–# and r are hidden from signer upon withdrawal
–t does not reveal anything about nym (is blinded by r)
–proof proof does not reveal anything
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Extensions and more

e-Cash
# K-spendable cash

– Multiple serial numbers and randomizers per coin
– Use PRF to generate serial number and randomizers from seed in coin

# Money laundering preventions
– Must not spend more that $10000 dollars with same party
– Essentially use additional coin defined per merchant that controls this

Other protocols from these building blocks, essentially anything with authentication and 
privacy
# Anonymous credentials, eVoting, ....

Alternative building blocks
# A number of signatures scheme that fit the same bill
# (Verifiable) encryption schemes that work along as well
# Alternative framework: Groth-Sahai proofs plus “structure-preserving” schemes
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Advertisement :-)

PhD and Postdocs available at IBM Research – Zurich 
Please contact me
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Thank you!
#eMail: identity@zurich.ibm.com
#Links:

– www.abc4trust.eu
– www.futureID.eu
– www.au2eu.eu
– www.PrimeLife.eu 
– www.zurich.ibm.com/idemix
– idemixdemo.zurich.ibm.com

#Code
– github.com/p2abcengine & abc4trust.eu/idemix

http://www.abc4trust.eu/
http://www.futureID.eu/
http://www.PrimeLife.eu/
http://www.zurich.ibm.com/idemix
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