Cryptographic e-Cash

Jan Camenisch

IBM Research - Zurich @JanCamenisch ibm.biz/jancamenisch

Requirements

- Anonymity: Withdrawal and Deposit must be unlinkable
- No Double Spending: Coin is bit-strings, can be spend twice

- Sign notes with digital signature scheme
-Note = (serial number \#, value)
-Secure because
- signature scheme can not be forged
- bank will accepts some serial number only once \rightarrow on-line e-cash
- Not anonymous because (cf. paper solution)
- bit-string of signature is unique
- serial number is unique

- Use (more) cryptography
- Hide serial number from bank when issuing
- e.g., sign commitment of serial number
- Reveal serial number and proof
- knowledge of signature on
- commitment to serial number
- Anonymous because of commitments scheme and zero-knowledge proof

..... challenge is to do all this efficiently!

A set G with operation \square is called a group if:

- closure
for all a, b, in $G \rightarrow a \circ b$ in G
- commutativity
for all $\mathrm{a}, \mathrm{b}, \mathrm{in} \mathrm{G} \rightarrow \mathrm{a} \circ \mathrm{b}=\mathrm{b} \circ \mathrm{a}$
- associativity
for all a, b, c, in $G \rightarrow(a \circ b) \square c=a \square(b \square c)$
-identity
there exist some e in G, s.t. for all $a: a \square e=a$
-invertibility
for all a in G, there exist a^{-1} in $G: a \square a^{-1}=e$
- Example:
integers under addition $(Z,+)=\{\ldots,-2,-1,0,1,2, \ldots\}$ or $(Z n,+)=\{0,1,2, \ldots, n-1\}$
identity: $\mathrm{e}=0$
inverse: $\mathrm{a}^{-1}=-\mathrm{a}$
- exponentiation $=$ repeated application of \cdot, e.g., $\mathrm{a}^{3}=\mathrm{a} \cdot \mathrm{a} \cdot \mathrm{a}$
- a group is cyclic if every element is power of some fixed element:
-i.e., for each a in G, there is unique i such that $g^{i}=a$
$-\mathrm{g}=$ generator of the group
- define $g^{0}=1=$ identity element

$$
G=\langle g\rangle=\left\{1=g^{0}, g^{1}, g^{2}, \ldots, ., g^{q-1}\right\}
$$

$-q=|G|=$ order of group
if q is a prime number then G is cyclic
\rightarrow computation in exponents can be done modulo q :

$$
g^{i}=g^{i \bmod q}
$$

- computing with exponents:

$$
\begin{array}{rlrl}
g^{i+j}=g^{i} \cdot g^{j} & g^{i-j}=g^{i} / g^{j}=g^{i} \cdot\left(g^{j}\right)^{-1} \\
g^{i j}= & \left(g^{i}\right)^{j} & g^{-i}=\left(g^{-1}\right)^{i}=\left(g^{i}\right)^{-1}
\end{array}
$$

given g and x it is easy to compute $g^{x}, g^{1 / x}, \ldots$. given g^{x} and g^{y} it is easy to compute $g^{x} g^{y}=g^{x+y}$

Discrete Log Assumption given $\mathrm{g}^{\mathrm{x}} \quad$ it is hard to compute x

Diffie-Hellman Assumption given g^{x} and g^{y}
it is hard to compute g^{xy}

Decisional Diffie-Hellman Assumption given g^{x}, g^{y}, and $g^{z} \quad$ it is hard to decide if $g^{z}=g^{x y}$

$$
m \stackrel{?}{\epsilon}
$$

Binding

Binding

Hiding: for all message m, m^{\prime}

Commitment Scheme: Security

Hiding: for all message m, m^{\prime}

Group $G=\langle g\rangle=\langle h\rangle$ of order q
To commit to element $x \in Z_{q}$:

- Pedersen: perfectly hiding, computationally binding choose $r \in Z_{q} \quad$ and compute $c=g^{X} h^{r}$
- EIGamal: computationally hiding, perfectly binding: choose $r \in Z_{q}$ and compute $c=\left(g^{x} h^{r}, g^{r}\right)$

To open commitment:

- reveal \times and r to verifier
- verifier checks if $c=g^{x} h^{r}$

Pedersen's Scheme:
Choose $r \in Z_{q}$ and compute $c=g^{x} h^{r}$

Perfectly hiding:
Let c be a commitment and $u=\log _{g} h$
Thus $c=g^{x} h^{r}=g^{x+u r}=g^{(x+u r ')+u\left(r-r^{\prime}\right)}$

$$
=g^{x+u r^{\prime}} h^{r-r^{\prime}} \quad \text { for any } r^{\prime}!
$$

I.e., given c and x^{\prime} here exist r^{\prime} such that $c=g^{x^{\prime}} h^{r^{\prime}}$

Computationally binding:
Let $c,\left(x^{\prime}, r^{\prime}\right)$ and (x, r) s.t. $c=g^{x^{\prime}} h^{r^{\prime}}=g^{x} h^{r}$
Then $g^{x^{\prime}-x}=h^{r-r^{\prime}}$ and $u=\log _{g} h=\left(x^{\prime}-x\right) /\left(r-r^{\prime}\right) \bmod q$

Proof of Knowledge of Contents

Proof of Relations among Contents

Let $C 1=g^{m} h^{r}$ and $C^{\prime}=g^{m^{\prime}} h^{r}$ then：

$\operatorname{PK}\left\{(\alpha, \beta): \quad C=g^{\beta} h^{\alpha}\right\}$

$$
\operatorname{PK}\left\{(\alpha, \beta, \gamma): \quad C^{\prime}=g^{\beta} h^{\alpha} \wedge C=\left(g^{2}\right)^{\beta} h^{\gamma}\right\}
$$

- interactive proof between a prover and a verifier about the prover's knowledge

- properties:
zero-knowledge
verifier learns nothing about the prover's secret
proof of knowledge (soundness)
prover can convince verifier only if she knows the secret
completeness
if prover knows the secret she can always convince the verifier

Zero Knowledge Proofs of Knowledge of Discrete Logarithms

Given group <g> and element $y \in\langle g\rangle$.

Prover wants to convince verifier that she knows \times s.t. $y=g^{x}$ such that verifier only learns y and g.

random r

$$
\begin{array}{ccc}
t:=g^{r} & t & \\
s:=r-c x & c & \text { random } c \\
s & t=g^{s} y^{c} ?
\end{array}
$$

notation: $\operatorname{PK}\left\{(a): y=g^{a}\right\}$

Zero Knowledge Proofs: Security

Proof of Knowledge Property:
If prover is successful with non-negl. probability, then she "knows" $x=\log g y$, i.e., ones can extract x from her.

Assume $c \in\{0,1\}^{\mathrm{k}}$ and consider execution tree:

If success probability for any prover (including malicious ones)
is $>2^{-k}$ then there are two accepting tuples ($\mathrm{t}, \mathrm{c} 1, \mathrm{~s} 1$) and ($\mathrm{t}, \mathrm{c} 2, \mathrm{~s} 2$) for the same t .

Zero Knowledge Proofs: Security

Prover might do protocol computation in any way it wants \& we cannot analyse code.
Thought experiment:

- Assume we have prover as a black box \rightarrow we can reset and rerun prover
- Need to show how secret can be extracted via protocol interface

$$
t=g^{s} y^{c}=g^{s^{\prime}} y^{c^{\prime}}
$$

$$
\rightarrow \quad y^{c^{\prime}-c}=9^{s-s^{\prime}}
$$

$$
\rightarrow \quad y=g^{\left(s-s^{\prime}\right) /\left(c^{\prime}-c\right)}
$$

$$
\rightarrow \quad x=\left(s-s^{\prime}\right) /\left(c^{\prime}-c\right) \bmod q
$$

Zero Knowledge Proofs: Security

Zero-knowledge property:
If verifier does not learn anything (except the fact that Alice knows $x=\log g y$)
Idea: One can simulate whatever Bob "sees".

Choose random c^{\prime}, s^{\prime}
compute $t:=g^{s^{\prime}} y^{c^{\prime}}$
if $c=c^{\prime}$ send $s^{\prime}=s$, otherwise restart

Problem: if domain of c too large, success probability becomes too small

Zero Knowledge Proofs: Security

One way to modify protocol to get large domain c :

Prover:
Verifier:

random
$t:=g^{r}$

random c, v
$h:=H(c, v)$
$h:=H(c, v)$?
C, V
$s:=r-c x$

$$
t=g^{s} y^{c} ?
$$

notation: $\operatorname{PK}\left\{(a): y=g^{a}\right\}$

Zero Knowledge Proofs: Security

One way to modify protocol to get large domain c :

Choose random c^{\prime}, s^{\prime} compute $\dagger^{\prime}:=g^{s^{\prime}} y^{c^{\prime}}$
after having received c "reboot" verifier

Choose random s
compute $\dagger:=g^{s} y^{c}$
send s

Signature $\operatorname{SPK}\left\{(a): y=g^{a}\right\}(m)$:

Signing a message m :

- chose random $r \in Z_{q}$ and
- compute

$$
c:=H\left(g^{r} \| m\right)=H(\dagger| | m)
$$

$$
\begin{equation*}
s:=r-c x \bmod (q) \tag{c,s}
\end{equation*}
$$

- output

Verifying a signature (c, s) on a message m :

- check $c=H\left(g^{s} y^{c} \| m\right) ? \quad \leftrightarrow \quad t=g^{s} y^{c} ?$

Security:

- underlying protocol is zero-knowledge proof of knowledge
- hash function $\mathrm{H}($.$) behaves as a "random oracle."$

Zero Knowledge Proofs of Knowledge of Discrete Logarithms

Many Exponents:

$$
\operatorname{PK}\left\{(\alpha, \beta, \gamma, \delta): \quad y=g^{\alpha} h^{\beta} z^{\gamma} k^{\delta} u^{\beta}\right\}
$$

Logical combinations:

$$
\begin{aligned}
& \operatorname{PK}\left\{(\alpha, \beta): \quad y=g^{\alpha} \wedge z=g^{\beta} \wedge u=g^{\beta} h^{\alpha}\right\} \\
& \operatorname{PK}\left\{(\alpha, \beta): y=g^{\alpha} \vee z=g^{\beta}\right\}
\end{aligned}
$$

Intervals and groups of different order (under SRSA):

$$
\begin{aligned}
& \operatorname{PK}\left\{(a): y=g^{a} \wedge a \in[A, B]\right\} \\
& \operatorname{PK}\left\{(a): y=g^{a} \wedge z=g^{a} \wedge a \in[0, \min \{\operatorname{ord}(g), \operatorname{ord}(g)\}]\right\}
\end{aligned}
$$

Non-interactive (Fiat-Shamir heuristic, Schnorr Signatures):

$$
\operatorname{PK}\left\{(a): y=g^{a}\right\}(m)
$$

Some Example Proofs and Their Analysis

Let $g, h, C 1, C 2, C 3$ be group elements.
Now, what does

$$
\operatorname{PK}\left\{(\alpha 1, \beta 1, \alpha 2, \beta 2, a 3, \beta 3): \quad C 1=g^{\alpha 1} h^{\beta 1} \wedge C 2=g^{\alpha 2} h^{\beta 2} \wedge C 3=g^{\alpha 3} h^{\beta 3} \wedge C 3=g^{a 1} g^{\alpha 2} h^{\beta 3}\right\}
$$

mean?
\rightarrow Prover knows values $\alpha 1, \beta 1, \alpha 2, \beta 2, \beta 3$ such that

$$
\begin{aligned}
& C 1=g^{a 1} h^{\beta 1}, C 2=g^{a 2} h^{\beta 2} \text { and } \\
& C 3=g^{a 1} g^{a 2} h^{\beta 3}=g^{a 1+a 2} h^{\beta 3}=g^{a 3} h^{\beta 3} \\
& a 3=a 1+a 2(\bmod q)
\end{aligned}
$$

And what about:

$$
\begin{aligned}
& \operatorname{PK}\left\{(a 1, \ldots, \beta 3): \quad C 1=g^{a 1} h^{\beta 1} \wedge C 2=g^{a 2} h^{\beta 2} \wedge C 3=g^{a 3} h^{\beta 3} \wedge C 3=g^{a 1}\left(g^{5}\right)^{a 2} h^{\beta 3}\right\} \\
\rightarrow \quad & C 3=g^{a 1} g^{a 2} h^{\beta 3}=g^{a 1+5 a 2} h^{\beta 3} \\
& a 3=a 1+5 a 2 \quad(\bmod q)
\end{aligned}
$$

Some Example Proofs and Their Analysis

Let $g, h, C 1, C 2, C 3$ be group elements.

Now, what does

$$
\operatorname{PK}\left\{(a 1, \ldots, \beta 3): \quad C 1=g^{a 1} h^{\beta 1} \wedge C 2=g^{a 2} h^{\beta 2} \wedge C 3=g^{a 3} h^{\beta 3} \wedge C 3=C 2^{a 1} h^{\beta 3}\right\} \text { mean? }
$$

\rightarrow Prover knows values $\alpha 1, \beta 1, \alpha 2, \beta 2, \beta 3$ such that

$$
\begin{aligned}
& C 1=g^{a 1} h^{\beta 1}, C 2=g^{a 2} h^{\beta 2} \text { and } \\
& C 3=C 2^{a 1} h^{\beta 3}=\left(g^{a 2} h^{\beta 2}\right)^{a 1} h^{\beta 3}=g^{a 2 \cdot a 1} h^{\beta 3+\beta 2 \cdot a 1} \\
& C 3=g^{a 2 \cdot a 1} h^{\beta 3+\beta 2 \cdot a 1}=g^{a 3} h^{\beta 3} \\
& a 3=a 1 \cdot a 2(\bmod q)
\end{aligned}
$$

And what about

$$
\operatorname{PK}\left\{(\alpha 1, \beta 1 \beta 2): \quad C 1=g^{a 1} h^{\beta 1} \wedge \quad C 2=g^{a 2} h^{\beta 2} \wedge C 2=C 1^{a 1} h^{\beta 2}\right\}
$$

$$
\rightarrow \quad a 2=a 1^{2}(\bmod q)
$$

Some Example Proofs and Their Analysis

Let $g, h, C 1, C 2, C 3$ be group elements.

Now, what does

$$
\operatorname{PK}\left\{(\alpha 1, \ldots, \beta 2): \quad C 1=g^{a 1} h^{\beta 1} \wedge C 2=g^{a 2} h^{\beta 2} \wedge g=(C 2 / C 1)^{\alpha 1} h^{\beta 2}\right\} \text { mean? }
$$

\rightarrow Prover knows values $\alpha, \beta 1, \beta 2$ such that

$$
\begin{aligned}
& C 1=g^{\alpha 1} h^{\beta 1} \\
& g=(C 2 / C 1)^{a 1} h^{\beta 2}=\left(C 2 g^{-a 1} h^{-\beta 1}\right)^{a 1} h^{\beta 2} \\
& \rightarrow \quad g^{1 / a 1}=C 2 g^{-a 1} h^{-\beta 1} h^{\beta 2 / a 1} \\
& C 2=g^{a 1} h^{\beta 1} h^{-\beta 2 / a 1} g^{1 / a 1}=g^{a 1+1 / a 1} h^{\beta 1-\beta 2 / a 1} \\
& C 2=g^{a 2} h^{\beta 2} \\
& a 2=a 1+a 1^{-1}(\bmod q)
\end{aligned}
$$

Key Generation

1

Signing

Verification

$$
\sigma=\operatorname{sig}\left(\left(m_{1}, \ldots, m_{k}\right) \underline{\underline{I}}\right)
$$

$\operatorname{ver}\left(\sigma,\left(m_{1}, \ldots, m_{k}\right) \boldsymbol{q}\right)=\operatorname{true}$

Unforgeability under Adaptive Chosen Message Attack

1

Unforgeability under Adaptive Chosen Message Attack

Unforgeability under Adaptive Chosen Message Attack

$$
\begin{gathered}
\sigma^{\prime} \text { and } m^{\prime} \neq m_{i} \text { s.t. } \\
\operatorname{ver}\left(\sigma^{\prime}, m^{\prime}, \underline{y}\right)=\text { true }
\end{gathered}
$$

Unforgeability under Adaptive Chosen Message Attack

q

$$
\sigma=\operatorname{sig}\left(\left(m, \ldots, m_{j} m_{j+1}, \ldots, m_{k}\right), \frac{p}{\xi}\right)
$$

$\operatorname{ver}\left(\sigma,\left(m_{1}, \ldots, m_{k}\right), \underline{Y}\right)=\operatorname{true}$
Verification remains unchanged!
Security requirements basically the same, but

- Signer should not learn any information about $\mathrm{m} 1, \ldots, \mathrm{mj}$
- Forgery w.r.t. message clear parts and opening of commitments

$$
\sigma \text { on }\left(m_{1}, \ldots, m_{k}\right)
$$

$$
\sigma \text { on }\left(m_{1}, \ldots, m_{k}\right)
$$

$\left\{m_{i} \mid i \in S\right\}$

Variation:

- Send also mi to verifier and
- Prove that committed messages are signed
- Prove properties about hidden/committed mi

can be used multiple times
Damgaard,Camenisch\&Lysyanskaya Strong RSA, DL-ECC,..

can be used only once
Chaum, Brands, et al.
Discrete Logs, RSA,..

RSA Signature Scheme - For Reference

Rivest, Shamir, and Adlemann 1978
Secret Key: two random primes p and q
Public Key: $n:=p q$, prime e,
and collision-free hash function

$$
H:\{0,1\}^{\star}->\{0,1\}^{\ell}
$$

Computing signature on a message $m \in\{0,1\}^{\star}$

$$
\begin{aligned}
& d:=1 / e \bmod (p-1)(q-1) \\
& s:=H(m)^{d} \bmod n
\end{aligned}
$$

Verification of signature s on a message $m \in\{0,1\}^{\star}$

$$
s^{e}=H(m) \quad(\bmod n)
$$

Correctness: $s^{e}=\left(H(m)^{d}\right)^{e}=H(m)^{d \cdot e}=H(m) \quad(\bmod n)$

Verification signature on a message $m \in\{0,1\}^{*}$

$$
s^{e}:=H(m) \quad(\bmod n)
$$

Wanna do proof of knowledge of signature on a message, e.g.,

$$
\operatorname{PK}\left\{(m, s): s^{e}=H(m)(\bmod n)\right\}
$$

But this is not a valid proof expression!!!! :-(

Public key of signer: RSA modulus n and $a_{i}, b, d \in Q R_{n}, \underline{\mathbf{E}}$
Secret key: factors of n

To sign k messages $m 1, \ldots, m k \in\{0,1\}^{\ell}$:

- choose random prime $2^{\ell+2}>e>2^{\ell+1}$ and integer $s \approx n$
- compute c:

$$
c=\left(d /\left(a_{1}^{m 1} \ldots \cdot a_{k}^{m k} b^{s}\right)\right)^{1 / e} \bmod n
$$

- signature is (c,e,s)

To verify a signature (c, e, s) on messages $m 1, \ldots, m k$:

- $m 1, \ldots, m k \in\{0,1\}^{\ell}$:
- $e>2^{l+1}$
- $d=c^{e} a_{1}{ }^{m 1} \ldots . . . a_{k}^{m k} b^{s} \bmod n$

Theorem: Signature scheme is secure against adaptively chosen message attacks under Strong RSA assumption.

$C=a_{1}{ }^{m 1} a_{2}^{m 2} b^{s^{\prime}} \xrightarrow{c+\operatorname{PK}\left\{\left(m 1, m 2, s^{\prime}\right): c=a_{1}^{m 1} a_{2}^{m 2} b^{s^{\prime}}\right\}}$
Choose es"
(cess")
$c=\left(d /\left(C a_{3}^{m 3} b^{s^{\prime \prime}}\right)\right)^{1 / e} \bmod n$
$d=c^{e} a_{1}^{m 1} a_{2}^{m 2} a_{3}^{m 3} b^{s^{\prime}+s^{\prime \prime}} \bmod n$

Recall: $\quad d=c^{e} a 1^{m 1} a 2^{m 2} b^{s} \bmod n$
Observe:

- Let $c^{\prime}=c b^{\dagger} \bmod n$ with randomly chosen \dagger
- Then $d=c^{\prime e} a 1^{m 1} a 2^{m 2} b^{s-e t}(\bmod n)$, i.e., ($c^{\prime}, e, s^{*}=s-e t$) is also signature on $m 1$ and $m 2$

To prove knowledge of signature (c^{\prime}, e, s^{*}) on $m 2$ and some $m 1$

- provide c'
$\cdot \operatorname{PK}\left\{(\varepsilon, \mu 1, \sigma): d / a 2^{m 2}:=c^{\prime \varepsilon} a 1^{\mu 1} b^{\sigma} \wedge \mu \in\{0,1\}^{l} \wedge \varepsilon>2^{l+1}\right\}$
\rightarrow proves $d:=c^{\prime \varepsilon} a 1^{\mu 1} a 2^{m 2} b^{\sigma}$

- Issue coin: Hide serial number from bank when issuing
- sign commitment of random serial number
- Spend coin: reveal serial number and proof
- knowledge of signature on
- commitment to serial number

Choose e, s"

choose random \#, s' and compute
$c=a_{1}{ }^{\#} b^{s^{\prime}}$

$$
\begin{aligned}
& \left(c, e, s^{\prime \prime}+s^{\prime}\right) \text { s.t. } \\
& d=c^{e} a_{1}^{\#} b^{s^{\prime \prime}+s^{\prime}}(\bmod n)
\end{aligned}
$$

(c,e, s" $+s^{\prime}$) s.t.

$$
d=c^{e} a_{1}^{\#} b^{s^{\prime \prime}+s^{\prime}}(\bmod n)
$$

compute
$c^{\prime}=c b^{s^{\prime}} \bmod n$

proof $=\operatorname{PK}\left\{(\varepsilon, \mu, \rho, \sigma): \quad d / a_{1}^{\#}=c^{\prime \varepsilon} b^{\sigma}(\bmod n)\right\}$

$$
\begin{aligned}
& \left(c, e, s^{\prime \prime}+s^{\prime}\right) \text { s.t. } \\
& d=c^{e} a_{1}^{\#} b^{s^{\prime \prime}+s^{\prime}}(\bmod n)
\end{aligned}
$$

compute

$c^{\prime}=c b^{s^{\prime}} \bmod n$

proof $=\operatorname{PK}\left\{(\varepsilon, \mu, \rho, \sigma): \quad d / a_{1}{ }^{\#}=c^{\prime \varepsilon} b^{\sigma}(\bmod n)\right\}$

- Anonymity
- Bank does not learn \# during withdrawal
- Bank \& Shop do not learn c, e when spending

Double Spending:

- Spending = Compute
$-c^{\prime}=c b^{s^{\prime}} \bmod n$
- proof $=\operatorname{PK}\left\{(\varepsilon, \mu, \rho, \sigma): \quad d / a_{1}{ }^{\#}=c^{\prime \varepsilon} b^{\sigma}(\bmod n)\right\}$
- Can use the same \# only once....
- If more \#'s are presented than withdrawals:
- Proofs would not sound
- Signature scheme would not secure

On-Line Solution:

1. Coin = random serial \# (chosen by user) signed by Bank
2. Banks signs blindly
3. Spending by sending \# and prove knowledge of signature to Merchant
4. Merchant checks validy w/ Bank
5. Bank accepts each serial \# only once.

Off-Line:

- Can check serial \# only after the fact
- ... but at that point user will have been disappeared...

Goal:

-spending coin once: OK
-spending coin twice: anonymity revoked

Seems like a paradox, but crypto is all about solving paradoxical problems :-)

Main Idea:

-Include \#, id, r
-Upon spending:

$$
\text { reveal \#, and } t=i d+r u \text {, }
$$

with c randomly chosen by merchant

- † won't reveal anything about id!
-However, given two equations (for the same \#, id, r)

$$
t 1=i d+r u 1
$$

$$
t 2=i d+r u 2
$$

one can solve for id.
choose random \#, r, s' and compute
$c=a_{1}{ }^{\#} a_{2}{ }^{r} b^{s^{\prime}}$

$$
d=c^{e} C a_{3}^{n y m} b^{s^{\prime \prime}} \bmod n
$$

(c,e, s"+s') s.t.
$d=c^{e} a_{1}^{\#} a_{2}^{r} a_{3}^{n y m} b^{s^{\prime \prime}+s^{\prime}}(\bmod n)$

Let $G=\langle g\rangle$ be a group of order q

$$
\begin{aligned}
& \left(c, e, s^{\prime \prime}+s^{\prime}\right) \text { s.t. } \\
& d=c^{e} a_{1}^{\#} a_{2}^{r} a_{3}^{n y m} b^{s^{\prime \prime}+s^{\prime}}(\bmod n)
\end{aligned}
$$

compute
$t=r+u$ nym $\bmod q$
$c^{\prime}=c b^{s^{\prime}} \bmod n$
proof $=\operatorname{PK}\{(\varepsilon, \mu, \rho, \sigma)$:

$$
\left.d / a_{1}^{\#}=c^{\prime \varepsilon} a_{2}^{\rho} a_{3}^{\mu} b^{\sigma}(\bmod n) \wedge g^{\dagger}=g^{\rho}\left(g^{U}\right)^{\mu}\right\}
$$

$$
\begin{aligned}
& \operatorname{PK}\{(\varepsilon, \mu, \rho, \sigma): \\
& \left.\quad d / a_{1}^{\#}=c^{\prime \varepsilon} a_{2}^{\rho} a_{3}^{\mu} b^{\sigma}(\bmod n) \wedge g^{\dagger}=g^{\rho}\left(g^{\mu}\right)^{\mu}\right\} \\
& \text { 1. } d=c^{\prime \varepsilon} a_{1}^{\#} a_{2}^{\rho} a_{3}^{\mu} b^{\sigma}(\bmod n) \\
& \quad \Rightarrow\left(c^{\prime}, \varepsilon, \sigma\right) \text { is a signature on }(\#, \mu, \rho) \\
& \text { 2. } g^{\dagger}=g^{\rho+u \mu} \\
& \quad=>\dagger=\rho+u \mu \bmod q, \\
& \quad \text { i.e., } \dagger \text { was computed correctly! }
\end{aligned}
$$

$\# \in L ?$

If so :

$$
\begin{aligned}
& \text { 1. } \dagger=\rho+u \mu \quad(\bmod q) \\
& \text { 2. } \dagger^{\prime}=\rho+u^{\prime} \mu(\bmod q) \\
& \text { solve for } \rho \text { and } \mu \text {. } \\
& \Rightarrow \mu=\text { nym because of proof }
\end{aligned}
$$

- Unforgeable:
-no more coins than \#'s,
- otherwise one can forge signatures
- or proofs are not sound
-if coins with same \# appears with different u's => reveals nym
- Anonymity:
-\# and r are hidden from signer upon withdrawal
$-\dagger$ does not reveal anything about nym (is blinded by r)
- proof proof does not reveal anything

Extensions and more

e-Cash

- K-spendable cash
- Multiple serial numbers and randomizers per coin
- Use PRF to generate serial number and randomizers from seed in coin
- Money laundering preventions
- Must not spend more that $\$ 10000$ dollars with same party
- Essentially use additional coin defined per merchant that controls this

Other protocols from these building blocks, essentially anything with authentication and privacy

- Anonymous credentials, eVoting,

Alternative building blocks

- A number of signatures scheme that fit the same bill
- (Verifiable) encryption schemes that work along as well
" Alternative framework: Groth-Sahai proofs plus "structure-preserving" schemes

PhD and Postdocs available at IBM Research - Zurich Please contact me

Thank you!

- eMail: identity@zurich.ibm.com
- Links:
- www.abc4trust.eu
- www.futureID.eu
- www.au2eu.eu
- www.PrimeLife.eu
- www.zurich.ibm.com/idemix
- idemixdemo.zurich.ibm.com
- Code
- github.com/p2abcengine \& abc4trust.eu/idemix
- D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of discrete logarithms and some generalizations. In EUROCRYPT '87, vol. 304 of LNCS, pp. 127-141. Springer-Verlag, 1988.
- S. Brands. Rapid demonstration of linear relations connected by boolean operators.In EUROCRYPT '97, vol. 1233 of LNCS, pp. 318-333. Springer Verlag, 1997.
- Mihir Bellare: Computational Number Theory http://www-cse.ucsd.edu/~mihir/cse207/w-cnt.pdf
- Camenisch, Lysanskaya: Dynamic Accumulators and Applications to Efficient Revocation of Anonymous Credentials. Crypto 2002, Lecture Notes in Computer Science, Springer Verlag.
- Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in Computer Science, Springer Verlag.
- Jan Camenisch, Natalie Casati, Thomas Gross, Victor Shoup: Credential Authenticated Identification and Key Exchange. CRYPTO 2010:255-276
- Jan Camenisch, Maria Dubovitskaya, Gregory Neven: Oblivious transfer with access control. ACM Conference on Computer and Communications Security 2009: 131-140
- Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in Computer Science, Springer Verlag.
- M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko: The One-More-RSA-Inversion Problems and the Security of Chaum's Blind Signature Scheme. Journal of Cryptology, Volume 16, Number 3. Pages 185-215, Springer-Verlag, 2003.
- E. Bangerter, J. Camenisch and A. Lyskanskaya: A Cryptographic Framework for the Controlled Release Of Certified Data. In Twelfth International Workshop on Security Protocols 2004. www.zurich.ibm.com/~jca/publications
- Stefan Brands: Untraceable Off-line Cash in Wallets With Observers: In Advances in Cryptology - CRYPTO '93. Springer Verlag, 1993.
- J. Camenisch and A. Lyskanskaya: Efficient Non-transferable Anonymous Multi-show Credential System with Optional Anonymity Revocation. www.zurich.ibm.com/~jca/publications
- David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM, Vol. 24 No. 2, pp. 84-88, 1981.
- David Chaum: Blind Signatures for Untraceable Payments. In Advances in Cryptology - Proceedings of CRYPTO '82, 1983.
- David Chaum: Security Without Identification: Transaction Systems to Make Big Brother obsolete: in Communications of the ACM, Vol. 28 No. 10, 1985.
- Camenisch, Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. CRYPTO 2003: 126-144
- Victor Shoup: A computational introduction to Number Theory and Algebra. Available from: http://www.shoup.net/ntb/
- D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM.
- D. Chaum: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology, 1988.
- J. Camenisch and V. Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In Advances in Cryptology CRYPTO 2003.
- T. EIGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Advances in Cryptology CRYPTO '84.

