
© 2016 IBM Corporation

Cryptographic e-Cash

Jan Camenisch

IBM Research – Zurich
@JanCamenisch
ibm.biz/jancamenisch

IACR Summerschool – Blockchain Technologies

© 2016 IBM Corporation2 May 30, 2016

eCash scenario & requirements

User

Bank

Merchant

Deposit

Withdrawal

Spend

Requirements
● Anonymity: Withdrawal and Deposit must be unlinkable
● No Double Spending: Coin is bit-strings, can be spend twice

© 2016 IBM Corporation3 May 30, 2016

Towards a Solution: do it like paper money

User

Bank

Merchant

Deposit

Withdrawal

Spend

Sign notes with digital signature scheme
– Note = (serial number #, value)
– Secure because

• signature scheme can not be forged
• bank will accepts some serial number only once on-line e-cash→

– Not anonymous because (cf. paper solution)
• bit-string of signature is unique
• serial number is unique

100

100 100

© 2016 IBM Corporation4 May 30, 2016

Towards a Solution

User

Bank

Merchant

Deposit

Withdrawal

Spend

Use (more) cryptography
– Hide serial number from bank when issuing

• e.g., sign commitment of serial number
– Reveal serial number and proof

• knowledge of signature on
• commitment to serial number

– Anonymous because of commitments scheme and zero-knowledge proof

100

100
100

100 100

© 2016 IBM Corporation5 May 30, 2016

How to implement this?

Encryption
Schemes

Signature
Schemes

Commitment
Schemes

Zero-Knowledge
Proofs

..... challenge is to do all this efficiently!

© 2016 IBM Corporation6 May 30, 2016

mathematical setting

© 2016 IBM Corporation May 30, 2016

Abelian Groups

A set G with operation ▫ is called a group if:
– closure

for all a,b, in G a → ▫ b in G
– commutativity

for all a,b, in G a → ▫ b = b ▫ a
– associativity

for all a,b,c, in G (a → ▫ b) ▫ c = a ▫ (b ▫ c)
– identity

there exist some e in G, s.t. for all a: a ▫ e = a
– invertibility

for all a in G, there exist a-1 in G: a ▫ a-1 = e

Example:
integers under addition (Z,+)={...,-2,-1,0,1,2,...} or (Zn,+) = {0,1,2,...,n-1}
identity: e = 0
inverse: a-1 = - a

© 2016 IBM Corporation May 30, 2016

Cyclic Groups

exponentiation = repeated application of ∙ , e.g., a3 = a ∙ a ∙ a

a group is cyclic if every element is power of some fixed element:
– i.e., for each a in G, there is unique i such that gi = a
– g = generator of the group
– define g0= 1 = identity element

G = <g> = {1=g0, g1, g2, ..., ., gq-1}
– q = |G|= order of group

if q is a prime number then G is cyclic
 → computation in exponents can be done modulo q:

gi= gi mod q

computing with exponents:

gi+j = gi ∙ gj gi-j = gi / gj = gi ∙ (gj)-1

 gij = (gi)j g-i = (g-1)i = (gi)-1

© 2016 IBM Corporation May 30, 2016

The Discrete Logarithm Problem

given g and x it is easy to compute gx, g1/x,

given gx and gy it is easy to compute gx gy = gx+y

Discrete Log Assumption

 given gx it is hard to compute x

Diffie-Hellman Assumption

 given gx and gy it is hard to compute gxy

Decisional Diffie-Hellman Assumption

 given gx, gy, and gz it is hard to decide if gz = gxy

© 2016 IBM Corporation10 May 30, 2016

commitment scheme

© 2016 IBM Corporation May 30, 2016

m

m, 2-36-17 m є
?

mmm

mmm

Commitment Scheme: Functionality

© 2016 IBM Corporation May 30, 2016

m, 2-36-17

m', 3-21-11
m' є

?
mmm

m є
?

mmm

Binding

Commitment Scheme: Security

© 2016 IBM Corporation May 30, 2016

m, 2-36-17

m', 3-21-11
m' є

?
mmm

m є
?

mmm

Binding

Commitment Scheme: Security

© 2016 IBM Corporation May 30, 2016

Hiding: for all message m,
m'

m
'

m

mmm
'

mmm

Commitment Scheme: Security

© 2016 IBM Corporation May 30, 2016

Hiding: for all message m,
m'

m
'

m

mmm
'

mmm

mmm
'

mmm

m
'

m ?

Commitment Scheme: Security

© 2016 IBM Corporation May 30, 2016

Commitment Schemes

Group G = <g> = <h> of order q

To commit to element x Є Zq:

• Pedersen: perfectly hiding, computationally binding
choose r Є Zq and compute c = gxhr

• ElGamal: computationally hiding, perfectly binding:
choose r Є Zq and compute c = (gxhr, gr)

To open commitment:
• reveal x and r to verifier
• verifier checks if c = gxhr

© 2016 IBM Corporation May 30, 2016

Pedersen's Scheme:

Choose r Є Zq and compute c = gxhr

Perfectly hiding:
Let c be a commitment and u= logg h

Thus c = gxhr = gx+ur = g(x+ur')+u(r-r')

 = gx+ur'hr-r' for any r'!

I.e., given c and x' here exist r' such that c = gx'hr'

Computationally binding:
Let c, (x', r') and (x, r) s.t. c = gx'hr' = gxhr

Then gx'-x = hr-r' and u = logg h = (x'-x)/(r-r') mod q

Pedersen's Commitment Scheme

© 2016 IBM Corporation May 30, 2016

Proof
m

true

m

Proof
 m = 2 •m'

m, m'

true

m m
'

Proof of Knowledge of Contents

Proof of Relations among Contents

Commitment Scheme: Extended Features

© 2016 IBM Corporation May 30, 2016

Proof
m

true

m

Proof
 m = 2 •m'

m, m'

true

m m
'

Commitment Scheme: Extended Features

Let C1 = gmhr and C' = gm'hr then:

PK{(α,β): C = gβhα }

PK{(α,β,γ): C' = gβhα ⋀ C = (g2)βhγ }

© 2016 IBM Corporation20 May 30, 2016

zero-knowledge proofs

© 2016 IBM Corporation21 May 30, 2016

Zero-Knowledge Proofs

interactive proof between a prover and a verifier about the prover's knowledge

properties:
 zero-knowledge

verifier learns nothing about the prover's secret
 proof of knowledge (soundness)

prover can convince verifier only if she knows the secret
 completeness

if prover knows the secret she can always convince the verifier

Commitment

Challenge
Response

© 2016 IBM Corporation22 May 30, 2016

Given group <g> and element y Є <g> .

Prover wants to convince verifier that she knows x s.t. y = gx

such that verifier only learns y and g.

t = gs yc ?

Prover:

random r
t := gr

 Verifier:

random c

s := r - cx

t

s

c

notation: PK{(α): y = gα }

Zero Knowledge Proofs of Knowledge of Discrete Logarithms

y, gx

© 2016 IBM Corporation May 30, 2016

Zero Knowledge Proofs: Security

Proof of Knowledge Property:
If prover is successful with non-negl. probability, then she “knows” x = log g y ,

i.e., ones can extract x from her.

Assume c ∈ {0,1}k and consider execution tree:

 c = 0 c = 2k-1
..
.. x x x x

If success probability for any prover (including malicious ones)

is >2
-k

 then there are two accepting tuples (t,c1,s1) and
(t,c2,s2) for the same t.

© 2016 IBM Corporation May 30, 2016

Zero Knowledge Proofs: Security

Prover might do protocol computation in any way it wants & we cannot analyse code.
Thought experiment:
Assume we have prover as a black box we can reset and rerun prover→

Need to show how secret can be extracted via protocol interface

t

s
c

t

s'
c'

t = gs yc = gs' yc' → yc'-c = gs-s'

→ y = g(s-s')/(c'-c)

→ x = (s-s')/(c'-c) mod q

x x

© 2016 IBM Corporation May 30, 2016

Zero Knowledge Proofs: Security

Zero-knowledge property:
If verifier does not learn anything (except the fact that Alice knows x = log g y)

Idea: One can simulate whatever Bob “sees”.

t

s
c

Choose random c', s'
compute t := gs' yc'

if c = c' send s' = s ,
otherwise restart

Problem: if domain of c too large, success probability becomes too small

© 2016 IBM Corporation26 May 30, 2016

One way to modify protocol to get large domain c:

t = gs yc ?

Prover:

random r
t := gr

 Verifier:

random c,v
h := H(c,v)

h := H(c,v) ?
s := r - cx

t

s

h

c,v

notation: PK{(α): y = gα }

Zero Knowledge Proofs: Security

y, gx

© 2016 IBM Corporation May 30, 2016

Zero Knowledge Proofs: Security

One way to modify protocol to get large domain c:

t

h

Choose random c', s'
compute t' := gs' yc'

after having received c “reboot”
verifier

Choose random s
compute t := gs yc

send s

s

t'

 h

c,v

c,v

© 2016 IBM Corporation28 May 30, 2016

From Protocols To Signatures

Signing a message m:
- chose random r Є Zq and
- compute c := H(gr||m) = H(t||m)

s := r - cx mod (q)
- output (c,s)

Verifying a signature (c,s) on a message m:
- check c = H(gs yc||m) ? ↔ t = gs yc ?

Security:
- underlying protocol is zero-knowledge proof of knowledge
- hash function H(.) behaves as a “random oracle.”

Signature SPK{(α): y = gα }(m):

© 2016 IBM Corporation29 May 30, 2016

Zero Knowledge Proofs of Knowledge of Discrete Logarithms

Logical combinations:

PK{(α,β): y = gα ∧ z = gβ ∧ u = gβhα }
PK{(α,β): y = gα ∨ z = gβ }

Non-interactive (Fiat-Shamir heuristic, Schnorr Signatures):
 PK{(α): y = gα }(m)

Many Exponents:

PK{(α,β,γ,δ): y = gα hβzγkδuβ }

Intervals and groups of different order (under SRSA):
PK{(α): y = gα ∧ α Є [A,B] }

PK{(α): y = gα ∧ z = gα ∧ α Є [0,min{ord(g),ord(g)}] }

© 2016 IBM Corporation30 May 30, 2016

Some Example Proofs and Their Analysis

Let g, h, C1, C2, C3 be group elements.

Now, what does
 PK{(α1,β1,α2,β2, α3, β3): C1= gα1hβ1 ∧ C2= gα2hβ2 ∧ C3 =gα3hβ3∧ C3 = gα1gα2hβ3 }

mean?

 → Prover knows values α1, β1, α2, β2, β3 such that

 C1= gα1hβ1 , C2= gα2hβ2 and

 C3 = gα1gα2hβ3 = gα1 + α2 hβ3 = g α3 hβ3

 α3 = a1 + a2 (mod q)

And what about:
PK{(α1,...,β3): C1= gα1hβ1 ∧ C2= gα2hβ2 ∧ C3 =gα3hβ3 C3∧ = gα1 (g5)α2hβ3 }

 → C3 = gα1gα2hβ3 = gα1 + 5 α2 hβ3

 α3 = a1 + 5 a2 (mod q)

© 2016 IBM Corporation31 May 30, 2016

Some Example Proofs and Their Analysis

Let g, h, C1, C2, C3 be group elements.

Now, what does
PK{(α1,..,β3): C1= gα1hβ1 ∧ C2= gα2hβ2 ∧ C3 =gα3hβ3 ∧ C3 = C2α1hβ3 } mean?

 → Prover knows values α1, β1, α2, β2, β3 such that

 C1= gα1hβ1 , C2= gα2hβ2 and

 C3 = C2α1hβ3 = (gα2hβ2)α1hβ3 = gα2·α1hβ3+β2·α1

 C3 = gα2·α1 hβ3+β2·α1 = gα3 hβ3'

 a3 = a1 · a2 (mod q)

And what about
PK{(α1,β1 β2): C1= gα1hβ1 ∧ C2= gα2hβ2 ∧ C2 = C1α1hβ2 }

 → a2 = a12 (mod q)

© 2016 IBM Corporation32 May 30, 2016

Some Example Proofs and Their Analysis

Let g, h, C1, C2, C3 be group elements.

Now, what does
PK{(α1,..,β2): C1= gα1hβ1 ∧ C2= gα2hβ2 ∧ g = (C2/C1)α1hβ2 } mean?

 → Prover knows values α, β1, β2 such that

 C1= gα1hβ1

 g = (C2/C1)α1hβ2 = (C2 g-α1h-β1)α1 hβ2

 → g1/α1 = C2 g-α1h-β1 hβ2/α1

 C2 = gα1 hβ1 h-β2/α1 g1/α1 = gα1 + 1/α1 hβ1-β2/α1

 C2 = gα2 hβ2

 α2 = α1 + a1-1 (mod q)

© 2016 IBM Corporation33 May 30, 2016

signature schemes

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Functionality

Key Generation

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Functionality

(m1,..., mk)

σ = sig((m1,..., mk),)

Signing

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Functionality

(m1,..., mk)

σ = sig((m1,..., mk),)

Verification

σ

ver(σ,(m1,..., mk),) = true

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Security

m1
σ1

Unforgeability under Adaptive
Chosen Message Attack

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Security

m1
σ1

ml
σl

Unforgeability under Adaptive
Chosen Message Attack

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Security

m1
σ1

ml
σl

σ' and m'≠ mi s.t.
ver(σ', m',) = true

Unforgeability under Adaptive
Chosen Message Attack

© 2016 IBM Corporation May 30, 2016

Signature Scheme: Security

m1
σ1

ml
σl

σ' and m'≠ mi s.t.
ver(σ', m',) = true

Unforgeability under Adaptive
Chosen Message Attack

© 2016 IBM Corporation41 May 30, 2016

signature schemes with protocols

© 2016 IBM Corporation May 30, 2016

(,... , , mj+1,..., mk)

σ

ver(σ,(m1,..., mk),) = true

σ = sig(((,... , , mj+1,..., mk),)

Verification remains unchanged!
Security requirements basically the same, but

• Signer should not learn any information about m1, ..., mj
• Forgery w.r.t. message clear parts and opening of commitments

mmmjmmm1

mmm1 mmmj

Signature Scheme: Signing Hidden Messages

© 2016 IBM Corporation May 30, 2016

σ on (m1,..., mk)

Proving Possession of a Signature

© 2016 IBM Corporation May 30, 2016

{mi | i є S}

σ on (m1,..., mk)

Proving Possession of a Signature

© 2016 IBM Corporation May 30, 2016

{mi | i є S},
Proof

protocol

σ, {mi | i є S}

true

/

Proving Possession of a Signature

Variation:
● Send also mi to verifier and
● Prove that committed messages are signed
● Prove properties about hidden/committed mi

{mi | i є S}

σ on (m1,..., mk)

© 2016 IBM Corporation May 30, 2016

Blind Signatures vs Signatures with Protocols

can be used multiple times

Damgaard,Camenisch&Lysyanskaya

Strong RSA, DL-ECC,..

can be used only once

Chaum, Brands, et al.

Discrete Logs, RSA,..

© 2016 IBM Corporation47 May 30, 2016

Some signature schemes

© 2016 IBM Corporation48 May 30, 2016

RSA Signature Scheme – For Reference

Rivest, Shamir, and Adlemann 1978

Secret Key: two random primes p and q
Public Key: n := pq, prime e,

and collision-free hash function
 H: {0,1}* -> {0,1}ℓ

Computing signature on a message m Є {0,1}*
 d := 1/e mod (p-1)(q-1)

 s := H(m) d mod n

Verification of signature s on a message m Є {0,1}*

 se = H(m) (mod n)

Correctness: se = (H(m)d)e = H(m)d·e = H(m) (mod n)

© 2016 IBM Corporation49 May 30, 2016

RSA Signature Scheme – for reference

Verification signature on a message m Є {0,1}*
 se := H(m) (mod n)

Wanna do proof of knowledge of signature on a message, e.g.,
 PK{ (m,s): se = H(m) (mod n) }

But this is not a valid proof expression!!!! :-(

© 2016 IBM Corporation50 May 30, 2016

Public key of signer: RSA modulus n and ai, b, d Є QRn,

Secret key: factors of n

To sign k messages m1, ..., mk Є {0,1}ℓ :
● choose random prime 2ℓ+2 > e > 2ℓ+1 and integer s ≈ n
● compute c :

 c = (d / (a1
m1·...· ak

mk bs))1/e mod n

● signature is (c,e,s)

CL-Signature Scheme

© 2016 IBM Corporation51 May 30, 2016

To verify a signature (c,e,s) on messages m1, ..., mk:
● m1, ..., mk Є {0,1}ℓ:
● e > 2ℓ+1

● d = ce a1
m1·...· ak

mk bs mod n

Theorem: Signature scheme is secure against adaptively
chosen message attacks under Strong RSA assumption.

CL-Signature Scheme

© 2016 IBM Corporation52 May 30, 2016

Sign blindly with CL signatures

(,... , , mj+1,..., mk)mmmjmmm1

σ

σ = sig(((,... , , mj+1,..., mk),) mmm1 mmmj

Choose e,s”

c = (d/(C a3
m3 bs”))1/e mod n

C = a1
m1a2

m2 bs’
C + PK{(m1,m2,s’): C = a1

m1a2
m2 bs’}

(c,e,s’’)

d = ce a1
m1a2

m2a3
m3 bs’+s’’ mod n

© 2016 IBM Corporation53 May 30, 2016

Recall: d = ce a1m1a2m2 bs mod n

Observe:
#Let c' = c btmod n with randomly chosen t
#Then d = c'e a1m1a2m2 bs-et (mod n), i.e.,

(c',e, s* = s-et) is also signature on m1 and m2

To prove knowledge of signature (c',e, s*) on m2 and some m1
#provide c'
#PK{(ε, µ1, σ) : d/a2m2 := c'ε a1µ1 b σ ∧ µ Є {0,1}ℓ ∧ ε > 2ℓ+1 }

 → proves d := c'ε a1µ1 a2m2b σ

Proving Knowledge of a CL-signature

© 2016 IBM Corporation54 May 30, 2016

Realizing On-Line eCash

© 2016 IBM Corporation55 May 30, 2016

Recall basic idea

User

Bank

Merchant

Deposit

Withdrawal

Spend

Issue coin: Hide serial number from bank when issuing
– sign commitment of random serial number

Spend coin: reveal serial number and proof
– knowledge of signature on
– commitment to serial number

100

100
100

100 100

© 2016 IBM Corporation May 30, 2016

On-line E-cash: Withdrawal

choose random #, s'

and compute

C = a1
bs'

C + p
roo

f

Choose e,s”

c = (d/(C bs”))1/e mod n

(c,e,s”+s') s.t.

d = ce a1
bs” + s' (mod n)

(c,e,s”)

© 2016 IBM Corporation May 30, 2016

On-line E-cash: Payment

(c,e,s”+s') s.t.

d = ce a1
bs” + s' (mod n)

#, c', proofcompute
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) : d / a1

#= c'ε b σ (mod n) }

© 2016 IBM Corporation May 30, 2016

On-line E-cash: Payment

(c,e,s”+s') s.t.

d = ce a1
bs” + s' (mod n)

compute
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) : d / a1

#= c'ε b σ (mod n) }

#, c', proof

#
, c

',
pr

oo
f # Є L?

OK/ not OK

© 2016 IBM Corporation May 30, 2016

Security

Anonymity
– Bank does not learn # during withdrawal
– Bank & Shop do not learn c, e when spending

#, c', proof
#

, c
',

pr
oo

f # Є L?

OK/ not OK

C + p
roo

f

(c,e,s”)

© 2016 IBM Corporation May 30, 2016

Security

Double Spending:

#Spending = Compute
–c' = c bs'mod n
–proof = PK{(ε, µ, ρ, σ) : d / a1

#= c'ε b σ (mod n) }

#Can use the same # only once....
– If more #'s are presented than withdrawals:

• Proofs would not sound
• Signature scheme would not secure

© 2016 IBM Corporation61 May 30, 2016

Realizing Off-Line eCash

© 2016 IBM Corporation May 30, 2016

Recall On-Line E-Cash

On-Line Solution:
1. Coin = random serial # (chosen by user) signed by Bank
2. Banks signs blindly
3. Spending by sending # and prove knowledge of
 signature to Merchant
4. Merchant checks validy w/ Bank
5. Bank accepts each serial # only once.

Off-Line:
- Can check serial # only after the fact
- … but at that point user will have been disappeared...

100

100
100

© 2016 IBM Corporation63 May 30, 2016

Towards off-line signatures

100

100

100

Not Linkable

Li
nk

ab
le

Seems like a paradox, but crypto is all about solving paradoxical problems :-)

Goal:
–spending coin once: OK
–spending coin twice: anonymity revoked

Not Linkable

© 2016 IBM Corporation May 30, 2016

Off-line E-cash

Main Idea:
–Include #, id, r
–Upon spending:

reveal #, and t = id + r u,
with c randomly chosen by merchant

– t won't reveal anything about id!
–However, given two equations (for the same #, id, r)

 t1 = id + r u1
 t2 = id + r u2
one can solve for id.

© 2016 IBM Corporation May 30, 2016

Off-line E-cash: Withdrawal

choose random #, r, s'

and compute

C = a1
#a2

r bs'

C + p
roof

d = ce C a3
nym bs” mod n

(c,e,s”+s') s.t.

d = ce a1
#a2

r a3
nym bs” + s' (mod n)

(c,e,s”)

© 2016 IBM Corporation May 30, 2016

Off-line E-cash: Payment

(c,e,s”+s') s.t.

d = ce a1
#a2

r a3
nym bs” + s' (mod n)

choose random u

u

compute
t = r + u nym mod q
c' = c bs'mod n
proof = PK{(ε, µ, ρ, σ) :

 d / a1
#= c'ε a2

ρa3
µ b σ (mod n) ⋀ gt = gρ (gu)µ }

t, #, c', proof

Let G=<g> be a group of order q

© 2016 IBM Corporation May 30, 2016

Off-line E-cash: Payment

PK{(ε, µ, ρ, σ) :
d / a1

#= c'ε a2
ρa3

µ b σ (mod n) ⋀ gt = gρ (gu)µ }

1. d = c'ε a1
a2

ρa3
µ b σ (mod n)

=> (c', ε, σ) is a signature on (#, µ, ρ)

2. gt = gρ+uµ

=> t = ρ + u µ mod q,
i.e., t was computed correctly!

© 2016 IBM Corporation May 30, 2016

Off-line E-cash: Deposit

u, t, #,
proof

Є L?
If so: 1. t = ρ + u µ (mod q)

2. t' = ρ + u' µ (mod q)

solve for ρ and µ.
=> µ = nym because of proof

© 2016 IBM Corporation May 30, 2016

Off-line E-cash: Security

Unforgeable:
–no more coins than #'s,

• otherwise one can forge signatures
• or proofs are not sound

–if coins with same # appears with different u's => reveals nym

Anonymity:
–# and r are hidden from signer upon withdrawal
–t does not reveal anything about nym (is blinded by r)
–proof proof does not reveal anything

© 2016 IBM Corporation May 30, 2016

Extensions and more

e-Cash
K-spendable cash

– Multiple serial numbers and randomizers per coin
– Use PRF to generate serial number and randomizers from seed in coin

Money laundering preventions
– Must not spend more that $10000 dollars with same party
– Essentially use additional coin defined per merchant that controls this

Other protocols from these building blocks, essentially anything with authentication and
privacy
Anonymous credentials, eVoting,

Alternative building blocks
A number of signatures scheme that fit the same bill
(Verifiable) encryption schemes that work along as well
Alternative framework: Groth-Sahai proofs plus “structure-preserving” schemes

© 2016 IBM Corporation May 30, 2016

Advertisement :-)

PhD and Postdocs available at IBM Research – Zurich
Please contact me

© 2016 IBM Corporation72 May 30, 2016

Thank you!
#eMail: identity@zurich.ibm.com
#Links:

– www.abc4trust.eu
– www.futureID.eu
– www.au2eu.eu
– www.PrimeLife.eu
– www.zurich.ibm.com/idemix
– idemixdemo.zurich.ibm.com

#Code
– github.com/p2abcengine & abc4trust.eu/idemix

http://www.abc4trust.eu/
http://www.futureID.eu/
http://www.PrimeLife.eu/
http://www.zurich.ibm.com/idemix

© 2016 IBM Corporation May 30, 2016

References

D. Chaum, J.-H. Evertse, and J. van de Graaf. An improved protocol for demonstrating possession of discrete logarithms and
some generalizations. In EUROCRYPT ’87, vol. 304 of LNCS, pp. 127–141. Springer-Verlag, 1988.

S. Brands. Rapid demonstration of linear relations connected by boolean operators.In EUROCRYPT ’97, vol. 1233 of LNCS, pp.
318–333. Springer Verlag, 1997.

Mihir Bellare: Computational Number Theory
http://www-cse.ucsd.edu/~mihir/cse207/w-cnt.pdf

Camenisch, Lysanskaya: Dynamic Accumulators and Applications to Efficient Revocation of Anonymous Credentials. Crypto
2002, Lecture Notes in Computer Science, Springer Verlag.

Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in
Computer Science, Springer Verlag.

Jan Camenisch, Natalie Casati, Thomas Gross, Victor Shoup: Credential Authenticated Identification and Key Exchange.
CRYPTO 2010:255-276

Jan Camenisch, Maria Dubovitskaya, Gregory Neven: Oblivious transfer with access control. ACM Conference on Computer and
Communications Security 2009: 131-140

Ateniese, Song, Tsudik: Quasi-Efficient Revocation of Group Signatures. In Financial Cryptography 2002, Lecture Notes in
Computer Science, Springer Verlag.

M. Bellare, C. Namprempre, D. Pointcheval, and M. Semanko: The One-More-RSA-Inversion Problems and the Security of
Chaum's Blind Signature Scheme. Journal of Cryptology, Volume 16, Number 3. Pages 185 -215, Springer-Verlag, 2003.

E. Bangerter, J. Camenisch and A. Lyskanskaya: A Cryptographic Framework for the Controlled Release Of Certified Data. In
Twelfth International Workshop on Security Protocols 2004. www.zurich.ibm.com/~jca/publications

Stefan Brands: Untraceable Off-line Cash in Wallets With Observers: In Advances in Cryptology – CRYPTO '93. Springer Verlag,
1993.

http://www-cse.ucsd.edu/~mihir/cse207/w-cnt.pdf

© 2016 IBM Corporation May 30, 2016

References

J. Camenisch and A. Lyskanskaya: Efficient Non-transferable Anonymous Multi-show Credential System with Optional
Anonymity Revocation. www.zurich.ibm.com/~jca/publications

David Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM, Vol. 24
No. 2, pp. 84—88, 1981.

David Chaum: Blind Signatures for Untraceable Payments. In Advances in Cryptology – Proceedings of CRYPTO '82, 1983.

David Chaum: Security Without Identification: Transaction Systems to Make Big Brother obsolete: in Communications of the
ACM, Vol. 28 No. 10, 1985.

Camenisch, Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. CRYPTO 2003: 126-144

Victor Shoup: A computational introduction to Number Theory and Algebra. Available from: http://www.shoup.net/ntb/

D. Chaum: Untraceable Electronic Mail, Return Addresses, and Digital Pseudonyms. In Communications of the ACM.

D. Chaum: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability. Journal of Cryptology, 1988.

J. Camenisch and V. Shoup: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In Advances in Cryptology -
CRYPTO 2003.

T. ElGamal: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. In Advances in Cryptology -
CRYPTO '84.

http://www.zurich.ibm.com/~jca/publications
http://www.shoup.net/ntb/

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74

