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The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

“Backbone” [GarayKiayiasLeonardos15]
The core security goal of Bitcoin is to ensure that all

parties establish a common and irreversible view

of the sequence of transactions

This goal can be captured as an ideal
Transaction-Ledger Functionality

“If we had a trusted third party instead of the Bitcoin
network, how would we expect it to behave?”
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In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

j?f
A N X (Unfair)

Sl 4

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against _ Security with
corrupted majorities abort
Discounted

security
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[BentovKumaresan1i4,15]

Tools 1/2 : Authenticated Additive Secret
Sharing

X=X1@® ... ® Xn, (Sk,vk) —KeyGen

P1/ \P

[X]1 = X1,Sigsk(X1),VK [X]n = Xn,Sigsk(Xn),VK

* No n-1 parties have info on x
» Together all n parties can recover X
* No party can lie about its share

* Only x might be reconstructed!
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Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that
e Time restriction T
time T
R can claim | S can claim
coins colIns

e A predicate (relation) ‘R(state,buffer,tx):

* In order to spend the coins the receiver needs to
submit a tx satisfying R (at the point of validation).

e Supported by Bitcoin scripting language
o Captured by Validate(.)
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Protocol Idea for computing y=f(x1,...,Xn)

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,...,Xn)

e E.g., Every Pireceives share [y]i such that
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Protocol Idea for computing y=f(x1,...,Xn)

2. Use the following reconstruction idea:

2.1. Every P; transfers 1 bitcoin to every P; with the
restriction:

* Pjcan claim (spend) this coin in round pijjif it submits to
the ledger his valid share (and signature) by round pj

* if Pjhas not claimed this coin by the end of round pi,
then the coin is “refunded” to Pi (i.e., after round pij, P
can spend this coin himself).

2.2. Proceed in rounds in which the parties claim the coins
from other parties by announcing their shares (and
sighatures)



SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Protocol Idea for computing y=f(x1,...,Xn)

Security (SFE with fair compensation): Follow the money ...

e |f the adversary announces all his shares then every party:
 Sends n coins in phase two (one to each party)
 Claims back n coins in phase three (one from each party)

e |f a corrupted party P; does not announce his share then
every party
e Sends n coins in phase two (one to each party)
e Claims back
* n coins in phase three for announcing his shares
e the coin that it had sent to P;
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What if the adversary aborts before
making the committed transactions?

Time

' rdtocol Starts

O(n) Seconds _ Sharing is Output, Committed transactions
times 1 hour Start reclaiming transactions
O(n) This can be confirmed here ...
hours
1
t ... and reclaimed here ...
output

several hours - 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant
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SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.
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Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

robust

SFE Wlth-f-a-I-F compensatlon lt—the—ael*cepeepy—teame

—theprevery honest party should Iearn the output or get
compensated (fast ...)

How can we get robustness?
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S transfers g coins to R such that
e Time restriction (1., T+)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

e |ink: A reference ref such that only a transaction
with the same reference can spend the g coins

e A predicate (relation) ‘R(state,buffer,tx):
e |n order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).
(T.,T+), ref, R

v,address;,address;,2 ,aux,0;,T
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Example: A Summation protocol

Pi P> Pn
mn
M
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j=1
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Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Secure (private) P: P> P,
against arbitrary n
many colluding Pi 21 |211 210 - 21, $1—<>x1j
parties j=1
Po T2 |21 %22+ T2n| gy = (Pa,
j=1
Ty = Ly i
Phzn |2,1 Tyo -+ Ton j:? J
n
yio Y2 o ¥n | y=Py;



SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Assuming a public key infrastructure (commitments/encryption/
signatures) there exists a semi-honest SFE protocol 1 for every
function which

e Uses only public communication
e Tolerates arbitrary many semi-honest parties
¢ Terminates in constant rounds
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SFE with Robust Compen. : Construction

Tools 3/3 : The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure

Round 0: Security (with abort)

Setup generation (+ commitments

to randomness) e Privacy: The parties see
the following:
- Setup
- Commitments

Round 1: - Messages from m

Every Pi commits to its input

e (Correctness:
- If ZKPs succeed then

Rounds 2 ... pn+ 1: . .
Execute 1 round-by-round so that the pértles are indeed
in each round every party proves following Tt

(in ZK) that he follows - Else abort
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setup.
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Execute ttround-by-round so that Execute ttround-by-round so that

iIn each round every party proves iIn each round every party proves
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Idea: Use “GMW?”-like compiler on the Ledger
GMW’: — SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

FEvariita mr rniinA_hvi-rniinA en that

Validate(.) executes the code of an
extra party without inputs in GMW
and rejects if abort.

Round O:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pimakes n- prn+ 1
special 1-coin transactions By r:
e P;can spend coin in round r
¢ ref needs to have the protocol ID
* R is true if the transaction which
spends the coin includes a valid
r-round message for P

Rounds 3 ... pn+ 2: Execute

GMW( (1) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(r).



SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 1: The adversary correctly makes all the
“‘committing” transactions in Round 1

* |f no party cheats then every party claims from
each of the other parties as many coins as he
deposited by simply executing his protocol.

e |f some party Pjcheats, then every party still
claims all his coins as above + all the committed
coins that Pjcannot spend as he did not execute
his protocol.
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Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transactions in Round 1

e ¢e.g. aborts or commits to a different setup.

... seems to have similar issue as before ...

e Solution: The validation predicate can be changed as:
o Separates the parties into “islands” of consistent
setups (depending on their Round-1 transactions).
* For each island Ic[n]: Compute the function among

parties in | (with all other parties’ input being 0)
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GMW’: —p SFE with Robust Compensation
Round 0: Round 0:
Setup generation (+ commitments Setup generation (+ commitments to
to randomness) randomness)
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Do nothing ® P;can spend coininroundr
¢ ref needs to have the protocol ID
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Idea: Use “GMW?”-like compiler on the Ledger

GMW’: —p SFE with Robust Compensation

Round 0: Round 0: |

Setup generation (+ commitments Setup generation (+ commitments to

to randomness) randomness)

Round 1- Rour_ld 1: Eyery party _P. mak?s ln - P+

. special 1-coin transactions By n:

Do nothing ® P;can spend coininroundr
e mEEEmEmEEEEEEEEES : * ref needs to have the protocol ID
, Round 2: | o : e Ris true if the transaction which
' Every Pi commits to its input and 7 spends the coin includes a valid
s broadcasts his view of the public : r-round messaae for P:

' setup. -

---------------------- Rounds 2 ... pn+ 2: Execute
Rounds 3 ... pn+ 2: GMW(11) round-by-round so that in
Execute 1t round-by-round so that each round r every party spends all
in each round every party proves its round r referenced coins by a
(in NIZK) that the follows Tt transaction which includes the round

r message in GMW(1).




SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transaction in Round 1

e ¢e.g. aborts or commits to a different setup.

... seems to have similar issue as before ...

e Solution: The validation predicate can be changed as:
o Separates the parties into “islands” of consistent
setups (depending on their Round-1 transactions).
* For each island Ic[n]: Compute the function among

parties in | (with all other parties’ input being 0)

e All honest parties are on the same island
e (Corrupted parties can choose to play with the honest parties or
participate in a computation independent of honest inputs.



Crypto On Blockchain

Outline

e The functionality offered by blockchains

e |everaging Security Loss with Coins
... In Secure Function Evaluation (SFE)

e A formal cryptographic (UC) model for security proofs
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Benefits of this Modeling

e A single abstraction of the functionality offered by
cryptocurrencies
- Advanced transactions correspond to an advanced

validation predicate

e A definition of fair compensation as a (UC) functionality-
wrapper forces us to be precise
- An explicit formation of synchrony with a single global
clock (capturing what protocols assume in reality).

e Compatibility with standard (formal) analysis of crypto
protocols

e A (universal) composition theorem
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SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

Idea: The predicates are used to filter the adversarial
influence
o Qnit(State, Wallet;) = True iff the Wallet has enough
funds

e (QDbhr(State, Wallet) = True iff it is OK to deliver to P;
e E.g., If Pidoes not “owe” money

o (OWbri(State, Wallet;) = True iff it is OK for P; to abort
e E.g., if Pihas an increase of funds
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A wrapper functionality W(‘}/) with three predicates:

° (anit, QDlvr, QAbrt)

GIedger

“allocate”
Pi PKi

W(F)

Phase 1: Resource Allocation

Create (PK;, SKi) = Gen(r,1X)
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Take Away Message and Open Directions

e Bitcoin opens new directions for cryptographic models
- Adding a reward/punishment mechanism restricts the
set of likely attacks
- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)
e The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:
compatibility)



Take Away Message and Open Directions

e Bitcoin opens new directions for cryptographic models
- Adding a reward/punishment mechanism restricts the
set of likely attacks
- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)
e The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:
compatibility)

Future directions
e A game theoretic analysis might allow us to improve
existing results
e \WWhat more can we get from Bitcoin?
e The right model for exploring its rational aspects?



