Cryptography
on the Blockchain

Vassilis Zikas
RPI

IACR Summer School on Blockchain Techs

Aggelos Kiayias, Hong-Shen Zhou, and Vassilis Zikas, Fair and Robust Multi-Party
Computation using a Global Transaction Ledger, EUROCRYPT 2016.

Bitcoin

Bitcoin

What is bitcoin
and how does it work?

Bitcoin

What is bitcoin
and how does it work?

Is it secure?

O

(in restricted models)

97

Bitcoin

What is bitcoin
and how does it work?

Is it secure?

What do we get from it”

O

(in restricted models)

97

Bitcoin

What is bitcoin O

and how does it work?

(in restricted models)

IS it secure? O ?

What do we get from it”

What Crypto can get from Bitcoin?

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public Some economic
transaction ledger stuff ...

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public Some economic
transaction ledger stuff ...

A bulletin board with a
filter on what gets
written there

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public Some economic
transaction ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money

written there

The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

The core security goal of Bitcoin is to ensure that all
parties establish a common and irreversible view

of the sequence of transactions

The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

“Backbone” [GarayKiayiasLeonardos15]
The core security goal of Bitcoin is to ensure that all

parties establish a common and irreversible view

of the sequence of transactions

The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

“Backbone” [GarayKiayiasLeonardos15]
The core security goal of Bitcoin is to ensure that all

parties establish a common and irreversible view

of the sequence of transactions

This goal can be captured as an ideal
Transaction-Ledger Functionality

The Public Transaction Ledger

“What is exactly the problem that bitcoin solves””
AK, 2016

“Backbone” [GarayKiayiasLeonardos15]
The core security goal of Bitcoin is to ensure that all

parties establish a common and irreversible view

of the sequence of transactions

This goal can be captured as an ideal
Transaction-Ledger Functionality

“If we had a trusted third party instead of the Bitcoin
network, how would we expect it to behave?”

Crypto On Blockchain

Outline

e The functionality offered by blockchains

e |everaging Security Loss with Coins
... In Secure Function Evaluation (SFE)

e A formal cryptographic (UC) model for security proofs

Crypto On Blockchain

Outline

* The functionality offered by blockchains

e |everaging Security Loss with Coins
... In Secure Function Evaluation (SFE)

e A formal cryptographic (UC) model for security proofs

The Public Transaction Ledger

/ gledgb

State
St

_ /

The Public Transaction Ledger

GetState

\4

-

_

Gledger
State
St
Y

“State”

The Public Transaction Ledger

GetState

\4

(gledgh
State
St
_ /

“State”

<

(Submit, X)

The Public Transaction Ledger

GetState

\4

(gledgh
State
Stllx

_ /

“State”

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
Stllx

GIedgh

/

“State”

e |n reality: Not a Bulletin Board
* |nputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
St

GIedgh

/

“State”

e |n reality: Not a Bulletin Board
* |nputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
St

GIedgh

X
Validate(.) +—

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
St

“State”

GIede

X

— > Validate(.) +—

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
St

“State”

GIede

X

— > Validate(.) +—

/\

Yes

No

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
St

“State”

GIede

X

— > Validate(.) +—

/\

X
<

Yes

No

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

-

\4

_

State
Stllx

“State”

GIede

X

— > Validate(.) +—

/\

X
<

Yes

No

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

<

(Submit, X)

The Public Transaction Ledger

GetState

\4

-

_

State
Stllx

“State”

GIede

X

— > Validate(.) +—

/\

X

<

Yes

No

/

“State”

e |n reality: Not a Bulletin Board
* Inputs (transactions) are filtered

e The order in which transactions in

(Submit, X)

<

“State” are inserted might be adversarial

... but not too adversarial

The Public Transaction Ledger

/ gledgh

x | (Submit, x)
|«
State
> Stllx <

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

/ gledgh

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

(Submit, x)

<

GetState

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

GetState

State” " Biiffér

GIGdgg

“State (Submit, X)

<

(Permute,)

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

GetState

State” " Biiffér

GIGdgg

“State (Submit, X)

<

(Permute,)

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

GetState

State” " Biiffér

GIGdgg

“State (Submit, X)

<

(Permute,)

Can reorder the recently
iInserted transactions

The Public Transaction Ledger & Time

v

?

GetState

k r[(x1_,

GIedgh

X

Blockify(.)
1 “State”

State Buffer._> Va,llda,te() <«

X1,X2,... / \

«—Yes No

) y

A

(Permute,)

<

(Submit, x)

Can reorder the recently
Inserted transactions

The Public Transaction Ledger & Time

GetState

v

?

Blockify(.) '
<—I Xl “State”

State Buffer._> Va,llda,te() <«

GIedgh

X

X1,X2,... / \

r[(x1_,

«—Yes No

) y

A

(Permute,)

<

(Submit, x)

Can reorder the recently
Inserted transactions

The Public Transaction Ledger & Time

GetState

v

?

Blockify(.) '
<—I Xl “State”

State Buffer._> Va,llda,te() <«

GIedgh

X

VA

< Yes No

/

(Permute,)

<

(Submit, x)

Can reorder the recently
Inserted transactions

The Public Transaction Ledger & Time

v
Gledger

?
Blockify(.) <_| ' 1
VB,t) Ixv “State” x | (Submit, x)

State Buffer._> Va,llda,te() <—|<

. VA

< Yes No

_ /

(Permute,)

GetState

Can reorder the recently
Inserted transactions

What Crypto can we get from Bitcoin?

A public transaction Some economic
ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money
written there
The Model

(gledger) GClock)- hyb rid
(G)UC protocols

What Crypto can we get from Bitcoin?

A public transaction Some economic
ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money
written there
The Model

(gledger) GClock)- hyb rid
(G)UC protocols

o Compatibility with standard crypto-protocols (+
composition theorem)

What Crypto can we get from Bitcoin?

A public transaction Some economic
ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money
written there
The Model

(gledger) GClock)- hyb rid
(G)UC protocols

o Compatibility with standard crypto-protocols (+
composition theorem)

e Cryptographically as useful as having access
to (synchronous) stateful broadcast

What Crypto can we get from Bitcoin?

A public transaction Some economic
ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money
written there
The Model
(Gredser, Getocl)-hybrid “This cryptography has
been around for a long
(G)UC protocols time” JB 2016

o Compatibility with standard crypto-f ‘otocols (+
composition theorem)

e Cryptographically as useful as havirg access
to (synchronous) stateful broadcast

What Crypto can we get from Bitcoin?

A public transaction Some economic
ledger stuff ...
A bulletin board with a People (good or bad)
filter on what gets want money
written there
The Model
(Gredser, Getocl)-hybrid “This cryptography has
been around for a long
(G)UC protocols time” JB 2016

o Compatibility with standard crypto-f ‘otocols (+
composition theorem)

e Cryptographically as useful as havirg access
to (synchronous) stateful broadcast

Crypto On Blockchain

Outline

e The functionality offered by blockchains

e |everaging Security Loss with Coins
... In Secure Function Evaluation (SFE)

e A formal cryptographic (UC) model for security proofs

Crypto On Blockchain

Outline

e The functionality offered by blockchains

e A formal cryptographic (UC) model for security proofs

Secure Function Evaluation (SFE)

Goal: Parties P4,...,Pn with inputs Xi,...,Xn
wish to compute a function f(x1,...,Xn) securely

Secure Function Evaluation (SFE)

Ideal World F!

X1 X3 [fx) X\f(X)=y
Pf//'f()_() il ® A

> Pn

Secure Function Evaluation (SFE)

Ideal World F!

X1 X3 [fx) X\f(X)=y
Pf//'f()_() il ® A

> Pn

Real World

Secure Function Evaluation (SFE)

Ideal World F!

X1 X3 [fx) X\f(X)=y
Pf//'f()_() il ® A

> Pn

U

Real World

Secure Function Evaluation (SFE)

Ideal World F!

X1 X9 [f(x) XA\ fX)=y
R R

2

&

U

Real World

Secure Function Evaluation (SFE)

deal World! J! 5
22207t D L0 R s
S .) 2% ______________ /

- W R .. "R EEEEEEEEEEEEEE . N,

S
.

Real World

Secure Function Evaluation (SFE)

ldeal World

222

e 2 P/”Pi ______________ :

Protocol mis secure if for every adversary:

e (privacy) Whatever the adversary learns he could compute by himself
e (correctness) Honest (uncorrupted) parties learn their correct outputs

Real World H

S EmEEEEEEEEEm .

\

'------

~---------1

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

ff

AR TN/
Py P B

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

j?f
A N X (Unfair)

Sl 4

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

j?f
A N X (Unfair)

Sl 4

Fair SFE is impossible against corrupted majorities [Cleve86]

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

j?f
A N X (Unfair)

Sl 4

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against Security with
corrupted majorities abort

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

j?f
A N X (Unfair)

Sl 4

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against _ Security with
corrupted majorities abort
Discounted

security

SFE with Fair(ness) Compensation

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $3%

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

SFE with Fair(ness) Compensation

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $3%

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

ff
ZARETTIEENY
BT §

D (e @ X (Unfair

SFE with Fair(ness) Compensation

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $3%

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

ff
ZARETTIEENY
BT §

y @ X (Unfair)

+ + -
. |

~

SFE with Fair(ness) Compensation

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $3%

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

ff
ZARETTIEENY
BT §

y @ X (Unfair)

+ + -
. |

~

v/ (fair’)

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 1/2 : Authenticated Additive Secret
Sharing

X=X1@® ... ® Xn, (Sk,vk) —KeyGen

P1/ \P

[X]1 = X1,Sigsk(X1),VK [X]n = Xn,Sigsk(Xn),VK

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 1/2 : Authenticated Additive Secret
Sharing

X=X1@® ... ® Xn, (Sk,vk) —KeyGen

P1/ \P

[X]1 = X1,Sigsk(X1),VK [X]n = Xn,Sigsk(Xn),VK

* No n-1 parties have info on x
» Together all n parties can recover X
* No party can lie about its share

* Only x might be reconstructed!

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that

e Time restriction T

SFE with Fair(ness) Comp.: Construction
~ [BentovKumaresan14,15]
Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that
e Time restriction T
time

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that
e Time restriction T
time T
R can claim | S can claim
coins colIns

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that
e Time restriction T
time T
R can claim | S can claim
coins colIns

e A predicate (relation) ‘R(state,buffer,tx):

* In order to spend the coins the receiver needs to
submit a tx satisfying R (at the point of validation).

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Tools 2/2 : Claim and Refund Transactions
S transfers g coins to R such that
e Time restriction T
time T
R can claim | S can claim
coins colIns

e A predicate (relation) ‘R(state,buffer,tx):

* In order to spend the coins the receiver needs to
submit a tx satisfying R (at the point of validation).

e Supported by Bitcoin scripting language
o Captured by Validate(.)

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Protocol Idea for computing y=f(x1,...,Xn)

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,...,Xn)

e E.g., Every Pireceives share [y]i such that
v=[y]1+...+[y]n and public signature on [y]

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Protocol Idea for computing y=f(x1,...,Xn)

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,...,Xn)

e E.g., Every Pireceives share [y]i such that
v=[y]1+...+[y]n and public signature on [y]

ff
X o XA\)]s
i
P, P, -

&

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Protocol Idea for computing y=f(x1,...,Xn)

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,...,Xn)

e E.g., Every Pireceives share [y]i such that
v=[y]1+...+[y]n and public signature on [y]

f f
X1 . X\ [F(x)]n
DLl X

: &

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]
Protocol Idea for computing y=f(x1,...,Xn)

2. Use the following reconstruction idea:

2.1. Every P; transfers 1 bitcoin to every P; with the
restriction:

* Pjcan claim (spend) this coin in round pijjif it submits to
the ledger his valid share (and signature) by round pj

* if Pjhas not claimed this coin by the end of round pi,
then the coin is “refunded” to Pi (i.e., after round pij, P
can spend this coin himself).

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]
Protocol Idea for computing y=f(x1,...,Xn)

2. Use the following reconstruction idea:

2.1. Every P; transfers 1 bitcoin to every P; with the
restriction:

* Pjcan claim (spend) this coin in round pijjif it submits to
the ledger his valid share (and signature) by round pj

* if Pjhas not claimed this coin by the end of round pi,
then the coin is “refunded” to Pi (i.e., after round pij, P
can spend this coin himself).

2.2. Proceed in rounds in which the parties claim the coins
from other parties by announcing their shares (and
sighatures)

SFE with Fair(ness) Comp.: Construction
[BentovKumaresan1i4,15]

Protocol Idea for computing y=f(x1,...,Xn)

Security (SFE with fair compensation): Follow the money ...

e |f the adversary announces all his shares then every party:
 Sends n coins in phase two (one to each party)
 Claims back n coins in phase three (one from each party)

e |f a corrupted party P; does not announce his share then
every party
e Sends n coins in phase two (one to each party)
e Claims back
* n coins in phase three for announcing his shares
e the coin that it had sent to P;

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Protocol Starts

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Protocol Starts
Sharing is Output, Committed transactions

Seconds

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Protocol Starts
Sharing is Output, Committed transactions

Seconds

1 hour Start reclaiming transactions

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Protocol Starts
Sharing is Output, Committed transactions

Seconds

1 hour Start reclaiming transactions

several hours o 11t or compensation is settled

Rethinking SFE w Fair(ness) Compensation
[BentovKumaresani4,15]

Time

Protocol Starts
Sharing is Output, Committed transactions

Seconds

1 hour Start reclaiming transactions

several hours o 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Comnensation

What if the adversary aborts before
making the committed transactions?

Time

" rotocol Starts

Seconds Sharing is Output, Committed transactions

1 hour Start reclaiming transactions

several hours o 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Comnensation

What if the adversary aborts before
making the committed transactions?

Time

" rotocol Starts

Seconds Sharing is Output, Committed transactions

1 hour Start reclaiming transactions

This can be confirmed here ...

several hours o 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Comnensation

What if the adversary aborts before
making the committed transactions?

Time

" rotocol Starts

Seconds Sharing is Output, Committed transactions

1 hour Start reclaiming transactions

This can be confirmed here ...

... and reclaimed here ...

several hours - 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Comnensation

What if the adversary aborts before
making the committed transactions?

Time

" rotocol Starts

Seconds Sharing is Output, Committed transactions

1 hour Start reclaiming transactions

This can be confirmed here ...

... and reclaimed here ...

several hours o 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Comnensation

What if the adversary aborts before
making the committed transactions?

Time

' rdtocol Starts

O(n) Seconds _ Sharing is Output, Committed transactions
times 1 hour Start reclaiming transactions
O(n) This can be confirmed here ...
hours
1
t ... and reclaimed here ...
output

several hours - 11t or compensation is settled

“several’ =
e [BentovKumaresan1i4] linear in players (n)
e [BentovKumaresan1i5] constant

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

Fi
A L <N
P P> g}

@ X (Unfain

+ o+
b l
= =

~

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

SFE with Robust(ness) Compensation

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get

compensated

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

robust

SFE Wlth-f-a-I-F compensatlon lt—the—ael*cereapy—teame

—theprevery honest party should Iearn the output or get
compensated (fast ...)

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

robust

SFE Wlth-f-a-I-F compensatlon lt—the—ael*cepeepy—teame

—theprevery honest party should Iearn the output or get
compensated (fast ...)

How can we get robustness?

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T4)

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T4)
time

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T4)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T+)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

e |ink: A reference ref such that only a transaction
with the same reference can spend the g coins

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T+)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

e |ink: A reference ref such that only a transaction
with the same reference can spend the g coins

e A predicate (relation) ‘R(state,buffer,tx):
e |n order to spend the coins the receiver needs to
submit a tx satisfying R (at the point of validation).

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T+)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

e |ink: A reference ref such that only a transaction
with the same reference can spend the g coins

e A predicate (relation) ‘R(state,buffer,tx):
e |n order to spend the coins the receiver needs to
submit a tx satisfying R (at the point of validation).

v,address;,address;,2 ,aux,0;,T

SFE with Robust Compen. : Construction

Tools 1/3 : Special Transaction
S transfers g coins to R such that
e Time restriction (1., T+)
time T- T+

. |
coins are R canclaim S can claim
blocked coins coins

e |ink: A reference ref such that only a transaction
with the same reference can spend the g coins

e A predicate (relation) ‘R(state,buffer,tx):
e |n order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).
(T.,T+), ref, R

v,address;,address;,2 ,aux,0;,T

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

P> x2

Pn In

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

P1 P> Pn
P1 1 |T11 T12 - Tip a:1—<>a:13
j=1
P> o

Pn In

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Pi P> Pn
mn
D
P1 1 |T11 T12 - Tip | L1 =PI
j=1
mn
P2 2 | 721 %22 -+ Z2n | 4y = (Pay;
j=1
mn
LTy — Lo s
Pn Tn Lnl In2 - ITnn " j:? "
yi Yz - Yn

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Pi P> Pn
mn
M
P1 1 |T11 T12 - Tip | L1 =PI
j=1
mn
P2 2 | 721 %22 -+ Z2n | 4y = (Pay;
j=1
mn
Ty = T
Pn Tn Lnl In2 - ITnn " j:? "
mn
yio Y2 o ¥n | y=Py;

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Secure (private) P: P> P,
against arbitrary n
many colluding Pi 21 |211 210 - 21, $1—<>x1j
parties j=1
Po T2 |21 %22+ T2n| gy = (Pa,
j=1
Ty = Ly i
Phzn |2,1 Tyo -+ Ton j:? J
n
yio Y2 o ¥n | y=Py;

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE

An SFE protocol which is secure when parties follow their instructions

Assuming a public key infrastructure (commitments/encryption/
signatures) there exists a semi-honest SFE protocol 1 for every
function which

e Uses only public communication
e Tolerates arbitrary many semi-honest parties
¢ Terminates in constant rounds

SFE with Robust Compen. : Construction

Tools 3/3 : The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure

SFE with Robust Compen. : Construction

Tools 3/3 : The GMW Compiler

Compile a semi-honest SFE protocol rtinto (malicious) secure

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 ... pn+ 1:

Execute 1t round-by-round so that
iIn each round every party proves
(in ZK) that he follows Tt

SFE with Robust Compen. : Construction

Tools 3/3 : The GMW Compiler
Compile a semi-honest SFE protocol mtinto (malicious) secure

Round 0: Security (with abort)

Setup generation (+ commitments

to randomness) e Privacy: The parties see
the following:
- Setup
- Commitments

Round 1: - Messages from m

Every Pi commits to its input

e (Correctness:
- If ZKPs succeed then

Rounds 2 ... pn+ 1: . .
Execute 1 round-by-round so that the pértles are indeed
in each round every party proves following Tt

(in ZK) that he follows - Else abort

SFE with Robust Compen. : Construction
Idea: Use “GMW?”-like compiler on the Ledger

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW

Round O:
Setup generation (+ commitments

to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 ... pn+ 1:

Execute 1t round-by-round so that
iIn each round every party proves
(in ZK) that he follows Tt

SFE with Robust Compen. : Construction
Idea: Use “GMW?”-like compiler on the Ledger

GMW —_— GMW’:

Round 0: Round 0:

Setup generation (+ commitments Setup generation (+ commitments

to randomness) to randomness)
Round 1:

Do nothing

Round 1: Round 2:

Every Pi commits to its input Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 2 ... pn+ 1: Rounds 3 ... pn+ 2:

Execute ttround-by-round so that Execute ttround-by-round so that

iIn each round every party proves iIn each round every party proves

(in ZK) that he follows Tt (in NIZK) that he follows 1

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW:’:

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW’: —> SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW’: —> SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

SFE with Robust Compen. : Construction
Idea: Use “GMW?”-like compiler on the Ledger

GMW’: — SFE with Robust Compensation
Round 0O: Round O:

Setup generation (+ commitments Setup generation (+ commitments to
to randomness) randomness)

Round 1:

Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW’: —> SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

Round O:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pimakes n- prn+ 1
special 1-coin transactions By, n:
e P;can spend coin in round r
¢ ref needs to have the protocol ID
* R is true if the transaction which
spends the coin includes a valid
r-round message for P

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW’: — SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

Execute 1t round-by-round so that
iIn each round every party proves
(in NIZK) that the follows T

Round O:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pimakes n- prn+ 1
special 1-coin transactions By, n:
e P;can spend coin in round r
¢ ref needs to have the protocol ID
* R is true if the transaction which
spends the coin includes a valid
r-round message for P

Rounds 3 ... pn+ 2: Execute

GMW((1) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(1).

SFE with Robust Compen. : Construction

Idea: Use “GMW?”-like compiler on the Ledger
GMW’: — SFE with Robust Compensation

Round O:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:

Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 ... pn+ 2:

FEvariita mr rniinA_hvi-rniinA en that

Validate(.) executes the code of an
extra party without inputs in GMW
and rejects if abort.

Round O:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pimakes n- prn+ 1
special 1-coin transactions By r:
e P;can spend coin in round r
¢ ref needs to have the protocol ID
* R is true if the transaction which
spends the coin includes a valid
r-round message for P

Rounds 3 ... pn+ 2: Execute

GMW((1) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(r).

SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 1: The adversary correctly makes all the
“‘committing” transactions in Round 1

* |f no party cheats then every party claims from
each of the other parties as many coins as he
deposited by simply executing his protocol.

e |f some party Pjcheats, then every party still
claims all his coins as above + all the committed
coins that Pjcannot spend as he did not execute
his protocol.

SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transactions in Round 1

e ¢e.g. aborts or commits to a different setup.

SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transactions in Round 1

e ¢e.g. aborts or commits to a different setup.

... seems to have similar issue as before ...

SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transactions in Round 1

e ¢e.g. aborts or commits to a different setup.

... seems to have similar issue as before ...

e Solution: The validation predicate can be changed as:
o Separates the parties into “islands” of consistent
setups (depending on their Round-1 transactions).
* For each island Ic[n]: Compute the function among

parties in | (with all other parties’ input being 0)

SFE with Robust Compen. : Construction
Idea: Use “GMW?”-like compiler on the Ledger

GMW’: —p SFE with Robust Compensation
Round 0: Round 0:
Setup generation (+ commitments Setup generation (+ commitments to
to randomness) randomness)
Round 1- Rour_ld 1: Eyery party !Di makes n - pr+
. special 1-coin transactions By n:
Do nothing ® P;can spend coininroundr
¢ ref needs to have the protocol ID
Round 2: | o e R is true if the transaction which
Every Pi commits to its input and spends the coin includes a valid
broadcasts his view of the public r-round messaae for P:
setup.
Rounds 2 ... pn+ 2: Execute
Rounds 3 ... pn+ 2: GMW(11) round-by-round so that in
Execute 1t round-by-round so that each round r every party spends all
in each round every party proves its round r referenced coins by a
(in NIZK) that the follows Tt transaction which includes the round
r message in GMW(1).

SFE with Robust Compen. : Construction
Idea: Use “GMW?”-like compiler on the Ledger

GMW’: —p SFE with Robust Compensation

Round 0: Round 0: |

Setup generation (+ commitments Setup generation (+ commitments to

to randomness) randomness)

Round 1- Rour_ld 1: Eyery party _P. mak?s ln - P+

. special 1-coin transactions By n:

Do nothing ® P;can spend coininroundr
e mEEEmEmEEEEEEEEES : * ref needs to have the protocol ID
, Round 2: | o : e Ris true if the transaction which
' Every Pi commits to its input and 7 spends the coin includes a valid
s broadcasts his view of the public : r-round messaae for P:

' setup. -

---------------------- Rounds 2 ... pn+ 2: Execute
Rounds 3 ... pn+ 2: GMW(11) round-by-round so that in
Execute 1t round-by-round so that each round r every party spends all
in each round every party proves its round r referenced coins by a
(in NIZK) that the follows Tt transaction which includes the round

r message in GMW(1).

SFE with Robust Compen. : Construction

Security with Robust Compensation.
e Case 2: Some corrupted party does not make
(consistent) transaction in Round 1

e ¢e.g. aborts or commits to a different setup.

... seems to have similar issue as before ...

e Solution: The validation predicate can be changed as:
o Separates the parties into “islands” of consistent
setups (depending on their Round-1 transactions).
* For each island Ic[n]: Compute the function among

parties in | (with all other parties’ input being 0)

e All honest parties are on the same island
e (Corrupted parties can choose to play with the honest parties or
participate in a computation independent of honest inputs.

Crypto On Blockchain

Outline

e The functionality offered by blockchains

e |everaging Security Loss with Coins
... In Secure Function Evaluation (SFE)

e A formal cryptographic (UC) model for security proofs

A Formal Model: GUC

|deal
World Fi
/ | \
P1 P2 .
0
Real

World

A Formal Model: GUC

|deal
World Fi
/ | \
P1 P2 .
0
Real

World

A Formal Model: GUC

|deal
World

A Formal Model: GUC

deal E
World : F1!
S !
" P1 P2 1A .
veedecenan- Foree-- ¥ - all properties we

0 want from

A Formal Model: GUC

=
~
_J

|deal
World

\ Should capture
"""" 3~ all properties we
want from Tt

-----i_o'

]

Benefits of this Modeling

Benefits of this Modeling

e A single abstraction of the functionality offered by
cryptocurrencies
- Advanced transactions correspond to an advanced

validation predicate

e A definition of fair compensation as a (UC) functionality-
wrapper forces us to be precise
- An explicit formation of synchrony with a single global
clock (capturing what protocols assume in reality).

e Compatibility with standard (formal) analysis of crypto
protocols

e A (universal) composition theorem

A Formal Model: GUC

&

|deal
World

D
X
>

A Formal Model: GUC

&

v
-
¢
o

0Q
¢
-

.---.I.----¢.

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

Idea: The predicates are used to filter the adversarial
influence
o Qnit(State, Wallet;) = True iff the Wallet has enough
funds

e (QDbhr(State, Wallet) = True iff it is OK to deliver to P;
e E.g., If Pidoes not “owe” money

o (OWbri(State, Wallet;) = True iff it is OK for P; to abort
e E.g., if Pihas an increase of funds

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)

Phase 1: Resource Allocation

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)

Phase 1: Resource Allocation
“allocate”

>

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)

Phase 1: Resource Allocation
“allocate”

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)

Phase 1: Resource Allocation
“allocate”

ff

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)
Phase 1: Resource Allocation
“allocate” »
P;
Create (PKi, SKi) = Gen(r,1k)
a\e?‘

ff

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)
Phase 1: Resource Allocation
“allocate” »
Pi PKi
< Create (PKi, SKi) = Gen(r,1k)
a\e?‘

ff

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:

° (anit, QDlvr, QAbrt)

GIedger

“allocate”
Pi PKi

W(F)

Phase 1: Resource Allocation

Create (PK;, SKi) = Gen(r,1X)

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

|
Gedger W(ff)
Phase 1: Resource Allocation
“allocate” »
Pi PKi
> Create (PK; SKi) = Gen(r,1k)
3
&ﬁ‘

g; m,} m
< > > f

m m for Sim f

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)
| Phase 2: Input
Pi
i m,F m
; > > f
m m for Sim f

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

GIedger W(ff)
* Phase 2: Input
“Input, xX”
Pi g
i m,F m
; > > f
m m for Sim f

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

Q@fs
lay
Gedger % |y
* Phase 2: Input
“Input, x”
P; g
i m,F m
: > > f
m m for Sim ¥

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

Q@fs
lay
GIedger ? '%A W(jt‘f)
Phase 2: Input
Input, X

P; g
i m,F m
: > > f

m m for Sim ¥

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

9@1‘8
lay
Gledger | '%A W('F7)
Phase 2: Input
“Input, x” . , Q'nit(State, PKi)
P; 7\
No Yes
m m for Sim ‘T

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

9@1‘8
lay
Gledger | '%A W('F7)
Phase 2: Input
“Input, x” . Q'nit(State, PKi)
P /N
No Yes
N\
m m for Sim ‘T

SFE with Robust Compen. : Functionality

A wrapper functionality W(‘}/) with three predicates:
® (anit, QDIvr, QAbrt)

Sldger % W(F)

Phase 2: Input

ulnput, X!! X anit(State,PKi)

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

GIedger W(ff)
P; Phase 3: Output
i m,F m
; > > f
m m for Sim f
< <<

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

GIedger W(ff)

P; Phase 3: Output

< Deliver, (f(x1),...,f(Xn))

i m, F X m > T

m m for Sim

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

GIedger W(ff)

P; Phase 3: Output

Ready for FairDeliver

+
- Corrupt outputs < Deliver, (f(x1),...,f(Xxn))
: > > f
m m for Sim J

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

GIedger W(ff)

P; Phase 3: Output

Ready for FairDeliver

+
- Corrupt outputs < Deliver, (f(x1),...,f(Xxn))
: > > f
m m for Sim J

“Deliver/Abort P X

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

Slodger '% W(F)

P; Phase 3: Output

Ready for FairDeliver

+
- Corrupt outputs < Deliver, (f(x1),...,f(Xxn))
: > > f
m m for Sim J

“Deliver/Abort P X

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

9 The adversary can deliver to P;only if
~<€ QPWvr(State, Pi)=True

GIedger \ng
The adversary can make P; abort only if
QAbr(State, Pi)=True
P; Phase 3: Output

Ready for FairDeliver

+
- Corrupt outputs < Deliver, (f(x1),...,f(Xxn))
& LY . i >
m m for Sim

“Deliver/Abort P X

SFE with Robust Compen. : Functionality

A wrapper functionality Wes,... pn(’J7) with three predicates:
Y (anit, QDIvr, QAbrt)

9 The adversary can deliver to P;only if
~<€ QPWvr(State, Pi)=True

GIedger \ng
The adversary can make P; abort only if
QAbr(State, Pi)=True
P, . 7TX)/L Phase 3: Output

Ready for FairDeliver

+
- Corrupt outputs < Deliver, (f(x1),...,f(Xxn))
& LY . i >
m m for Sim

“Deliver/Abort P X

A Formal Model: GUC

&

|deal
World

D
X
>

Take Away Message and Open Directions

Take Away Message and Open Directions

e Bitcoin opens new directions for cryptographic models
- Adding a reward/punishment mechanism restricts the
set of likely attacks
- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)
e The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:
compatibility)

Take Away Message and Open Directions

e Bitcoin opens new directions for cryptographic models
- Adding a reward/punishment mechanism restricts the
set of likely attacks
- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)
e The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:
compatibility)

Future directions
e A game theoretic analysis might allow us to improve
existing results
e \WWhat more can we get from Bitcoin?
e The right model for exploring its rational aspects?

