
Cryptography
on the Blockchain

IACR Summer School on Blockchain Techs

Vassilis Zikas
RPI

Aggelos Kiayias, Hong-Shen Zhou, and Vassilis Zikas, Fair and Robust Multi-Party
Computation using a Global Transaction Ledger, EUROCRYPT 2016.

Bitcoin

What is bitcoin
and how does it work?

Bitcoin

What is bitcoin
and how does it work?

Is it secure?

(in restricted models)

Bitcoin

What is bitcoin
and how does it work?

Is it secure?

(in restricted models)

What do we get from it?

Bitcoin

What is bitcoin
and how does it work?

Is it secure?

(in restricted models)

What do we get from it?

Bitcoin

What Crypto can get from Bitcoin?

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

What Crypto can get from Bitcoin?

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public
transaction ledger

Some economic
stuff …

What Crypto can get from Bitcoin?

A bulletin board with a
filter on what gets

written there

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public
transaction ledger

Some economic
stuff …

What Crypto can get from Bitcoin?

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there

In this talk
“Bitcoin = Ledger-based cryptocurrency”

A public
transaction ledger

Some economic
stuff …

The Public Transaction Ledger
“What is exactly the problem that bitcoin solves?”
 AK, 2016

The Public Transaction Ledger

The core security goal of Bitcoin is to ensure that all
parties establish a common and irreversible view

of the sequence of transactions

“What is exactly the problem that bitcoin solves?”
 AK, 2016

“Backbone” [GarayKiayiasLeonardos15]

The Public Transaction Ledger

The core security goal of Bitcoin is to ensure that all
parties establish a common and irreversible view

of the sequence of transactions

“What is exactly the problem that bitcoin solves?”
 AK, 2016

“Backbone” [GarayKiayiasLeonardos15]

The Public Transaction Ledger

The core security goal of Bitcoin is to ensure that all
parties establish a common and irreversible view

of the sequence of transactions

This goal can be captured as an ideal
Transaction-Ledger Functionality

“What is exactly the problem that bitcoin solves?”
 AK, 2016

“Backbone” [GarayKiayiasLeonardos15]

The Public Transaction Ledger

The core security goal of Bitcoin is to ensure that all
parties establish a common and irreversible view

of the sequence of transactions

This goal can be captured as an ideal
Transaction-Ledger Functionality

“If we had a trusted third party instead of the Bitcoin
network, how would we expect it to behave?”

“What is exactly the problem that bitcoin solves?”
 AK, 2016

Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs

Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs

The Public Transaction Ledger

State
St

Gledger

The Public Transaction Ledger

GetState

“State”

State
St

Gledger

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)

Gledger

The Public Transaction Ledger

GetState

“State”

State
St||x

(Submit, x)

Gledger

The Public Transaction Ledger

GetState

“State”

State
St||x

(Submit, x)

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)
Validate(.)

x

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)“State”
Validate(.)

x

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)“State”
Validate(.)

x

NoYes

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

GetState

“State”

State
St

(Submit, x)“State”
Validate(.)

x

NoYesx

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

Validate(.)

GetState

“State”

State
St||x

(Submit, x)“State” x

NoYesx

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered

The Public Transaction Ledger

Validate(.)

GetState

“State”

State
St||x

(Submit, x)“State” x

NoYesx

Gledger

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered
• The order in which transactions in

“State” are inserted might be adversarial
… but not too adversarial

The Public Transaction Ledger

Validate(.)

GetState

“State”

State
St||x

(Submit, x)“State” x

NoYesx

Gledger

Can reorder the recently
inserted transactions

The Public Transaction Ledger

Validate(.)

GetState

“State”

State
St||x

(Submit, x)“State” x

NoYesx

Gledger

Can reorder the recently
inserted transactions

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State

NoYes

Buffer

Can reorder the recently
inserted transactions

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYes

Buffer

Can reorder the recently
inserted transactions

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYes

Buffer
“State”

Can reorder the recently
inserted transactions

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYesx

Buffer
“State”

Can reorder the recently
inserted transactions

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYesx

Buffer
“State”

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYesx

Buffer
x1,x2,…

“State”

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)x

NoYesx

Buffer
x1,x2,…
 =
π(x1,…)

“State”

(Permute,π)

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer

(Permute,π)

time?

x1,x2,…
 =
π(x1,…)

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer

(Permute,π)

time?

t

x1,x2,…
 =
π(x1,…)

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer
x1,x2,…
 =
π(x1,…)

(Permute,π)

time?

t

Blockify(.) ?

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer
x1,x2,…
 =
π(x1,…)

(Permute,π)

xtime?

t

Blockify(.) ?

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer

(Permute,π)

xtime?

t

Blockify(.) ?

Can reorder the recently
inserted transactions

x

The Public Transaction Ledger & Time

Gledger

Validate(.)

GetState

“State”

State
(Submit, x)“State” x

NoYesx

Buffer

(Permute,π)

x (B, t)time?

t

Blockify(.) ?

Can reorder the recently
inserted transactions

x

What Crypto can we get from Bitcoin?

A public transaction
ledger

Some economic
stuff …

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there
 The Model

(Gledger, Gclock)-hybrid
(G)UC protocols

What Crypto can we get from Bitcoin?

A public transaction
ledger

Some economic
stuff …

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there
 The Model

(Gledger, Gclock)-hybrid
(G)UC protocols

• Compatibility with standard crypto-protocols (+
composition theorem)

What Crypto can we get from Bitcoin?

A public transaction
ledger

Some economic
stuff …

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there
 The Model

(Gledger, Gclock)-hybrid
(G)UC protocols

• Compatibility with standard crypto-protocols (+
composition theorem)

• Cryptographically as useful as having access
to (synchronous) stateful broadcast

What Crypto can we get from Bitcoin?

A public transaction
ledger

Some economic
stuff …

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there
 The Model

(Gledger, Gclock)-hybrid
(G)UC protocols

• Compatibility with standard crypto-protocols (+
composition theorem)

• Cryptographically as useful as having access
to (synchronous) stateful broadcast

“This cryptography has
been around for a long
time” JB 2016

What Crypto can we get from Bitcoin?

A public transaction
ledger

Some economic
stuff …

People (good or bad)
want money

A bulletin board with a
filter on what gets

written there
 The Model

(Gledger, Gclock)-hybrid
(G)UC protocols

• Compatibility with standard crypto-protocols (+
composition theorem)

• Cryptographically as useful as having access
to (synchronous) stateful broadcast

“This cryptography has
been around for a long
time” JB 2016

Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs

Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs

Secure Function Evaluation (SFE)

Goal: Parties P1,…,Pn with inputs x1,…,xn
wish to compute a function f(x1,…,xn) securely

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World
≈

π1(x1) π2(x2) πn(xn)

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World
≈

π1(x1) π2(x2) πn(xn)

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World
≈

π1(x1) π2(x2) πn(xn)

???

Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World
≈

π1(x1) π2(x2) πn(xn)

???
Protocol π is secure if for every adversary:
• (privacy) Whatever the adversary learns he could compute by himself
• (correctness) Honest (uncorrupted) parties learn their correct outputs

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

F f

P1 P2 Pn

y⊥⊥

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

F f

P1 P2 Pn

y⊥⊥ ✘ (Unfair)

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

F f

P1 P2 Pn

y⊥⊥

Fair SFE is impossible against corrupted majorities [Cleve86]

✘ (Unfair)

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

F f

P1 P2 Pn

y⊥⊥

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against
corrupted majorities

Security with
abort =

✘ (Unfair)

Fair SFE

In fair SFE: If the adversary learns any information
beyond (what is derived by) its inputs then every honest
party should learn the output

F f

P1 P2 Pn

y⊥⊥

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against
corrupted majorities

Security with
abort =

✘ (Unfair)

Discounted
security

SFE with Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $$$

SFE with Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

F f

P1 P2 Pn

y⊥⊥

!"" ✘ (Unfair)

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $$$

SFE with Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

+ -+

! ! #

F f

P1 P2 Pn

y⊥⊥

!"" ✘ (Unfair)

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $$$

SFE with Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

+ -+

! ! # ✔ (“fair”)

F f

P1 P2 Pn

y⊥⊥

!"" ✘ (Unfair)

Idea [AndrychowiczDziembowskiMalinowskiMazurek14]:
We can leverage unfairness with $$$

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 1/2 : Authenticated Additive Secret
 Sharing

PnP1

x=x1⊕ … ⊕ xn , (sk,vk)←KeyGen

[x]1 = x1,Sigsk(x1),vk [x]n = xn,Sigsk(xn),vk

…

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 1/2 : Authenticated Additive Secret
 Sharing

PnP1

x=x1⊕ … ⊕ xn , (sk,vk)←KeyGen

[x]1 = x1,Sigsk(x1),vk [x]n = xn,Sigsk(xn),vk

• No n-1 parties have info on x
• Together all n parties can recover x
• No party can lie about its share

• Only x might be reconstructed!

…

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

• Time restriction τ

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

time
• Time restriction τ

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

time τ
 R can claim

coins
 S can claim
 coins

• Time restriction τ

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

time τ
 R can claim

coins
 S can claim
 coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).

• Time restriction τ

SFE with Fair(ness) Comp.: Construction
 [BentovKumaresan14,15]

Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

time τ
 R can claim

coins
 S can claim
 coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).

• Time restriction τ

• Supported by Bitcoin scripting language
• Captured by Validate(.)

SFE with Fair(ness) Comp.: Construction

Protocol Idea for computing y=f(x1,…,xn)
1. Run SFE with unfair abort to compute n-out-of-n

authenticated sharing [y] of y=f(x1,…,xn)
• E.g., Every Pi receives share [y]i such that

 y=[y]1+…+[y]n and public signature on [y]i

 [BentovKumaresan14,15]

SFE with Fair(ness) Comp.: Construction

Protocol Idea for computing y=f(x1,…,xn)

F f

P1 P2 Pn

x1 x2 xn
[f(x)̅]1

[f(x)̅]2
…

[f(x)̅]n

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,…,xn)
• E.g., Every Pi receives share [y]i such that

 y=[y]1+…+[y]n and public signature on [y]i

 [BentovKumaresan14,15]

SFE with Fair(ness) Comp.: Construction

Protocol Idea for computing y=f(x1,…,xn)

F f

P1 P2 Pn

x1 x2 xn
[f(x)̅]1

[f(x)̅]2
…

[f(x)̅]n

Abort at this point is fair

1. Run SFE with unfair abort to compute n-out-of-n
authenticated sharing [y] of y=f(x1,…,xn)
• E.g., Every Pi receives share [y]i such that

 y=[y]1+…+[y]n and public signature on [y]i

 [BentovKumaresan14,15]

SFE with Fair(ness) Comp.: Construction

2. Use the following reconstruction idea:

2.1. Every Pi transfers 1 bitcoin to every Pj with the
restriction:
• Pj can claim (spend) this coin in round ρij if it submits to

the ledger his valid share (and signature) by round ρij
• if Pj has not claimed this coin by the end of round ρij,

then the coin is “refunded” to Pi (i.e., after round ρij, Pi
can spend this coin himself).

Protocol Idea for computing y=f(x1,…,xn)
 [BentovKumaresan14,15]

SFE with Fair(ness) Comp.: Construction

2. Use the following reconstruction idea:

2.1. Every Pi transfers 1 bitcoin to every Pj with the
restriction:
• Pj can claim (spend) this coin in round ρij if it submits to

the ledger his valid share (and signature) by round ρij
• if Pj has not claimed this coin by the end of round ρij,

then the coin is “refunded” to Pi (i.e., after round ρij, Pi
can spend this coin himself).

2.2. Proceed in rounds in which the parties claim the coins
from other parties by announcing their shares (and
signatures)

Protocol Idea for computing y=f(x1,…,xn)
 [BentovKumaresan14,15]

SFE with Fair(ness) Comp.: Construction

Security (SFE with fair compensation): Follow the money …

• If the adversary announces all his shares then every party:
• Sends n coins in phase two (one to each party)
• Claims back n coins in phase three (one from each party)

• If a corrupted party Pj does not announce his share then
every party
• Sends n coins in phase two (one to each party)
• Claims back

• n coins in phase three for announcing his shares
• the coin that it had sent to Pj

Protocol Idea for computing y=f(x1,…,xn)
 [BentovKumaresan14,15]

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

What if the adversary aborts before
making the committed transactions?

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

What if the adversary aborts before
making the committed transactions?

This can be confirmed here …

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

What if the adversary aborts before
making the committed transactions?

This can be confirmed here …

… and reclaimed here …

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

What if the adversary aborts before
making the committed transactions?

This can be confirmed here …

… and reclaimed here …

output or compensation is settled several hours

 [BentovKumaresan14,15]
Rethinking SFE w Fair(ness) Compensation

Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” =
• [BentovKumaresan14] linear in players (n)
• [BentovKumaresan15] constant

What if the adversary aborts before
making the committed transactions?

This can be confirmed here …

… and reclaimed here …

O(n)
times

=
O(n)
hours

till
output

output or compensation is settled several hours

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

P1 P2 Pn

y⊥⊥

!""+ -+

! ! #

✘ (Unfair)

✔ (“fair”)

F f

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

P1 P2 Pn

y⊥⊥

!""+ -+

! ! #+ +

$ $

✘ (Unfair)

✔ (“fair”)

F f

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

P1 P2 Pn

y⊥⊥

!""+ -+

! ! #+ +

$ $

DoS

%

+

✘ (Unfair)

✔ (“fair”)

F f

Rethinking SFE w Fair(ness) Compensation

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated.

P1 P2 Pn

y⊥⊥

!""+ -+

! ! #+ +

$ $ ✘

DoS

%

+

✘ (Unfair)

✔ (“fair”)

F f

SFE with Robust(ness) Compensation

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated

robust

(fast …)

SFE with Robust(ness) Compensation

Fair SFE: If the adversary learns any information beyond
(what is derived by) its inputs then every honest party
should learn the output

SFE with fair compensation: If the adversary learns
any information beyond (what is derived by) its inputs
then every honest party should learn the output or get
compensated

robust

How can we get robustness?

(fast …)

SFE with Robust Compen. : Construction

S transfers q coins to R such that
Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that
• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time
• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time τ- τ+

coins are
blocked

 R can claim
coins

 S can claim
 coins

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time τ- τ+

coins are
blocked

 R can claim
coins

 S can claim
 coins

• Link: A reference ref such that only a transaction
with the same reference can spend the q coins

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time τ- τ+

coins are
blocked

 R can claim
coins

 S can claim
 coins

• Link: A reference ref such that only a transaction
with the same reference can spend the q coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time τ- τ+

coins are
blocked

 R can claim
coins

 S can claim
 coins

• Link: A reference ref such that only a transaction
with the same reference can spend the q coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction

S transfers q coins to R such that

time τ- τ+

coins are
blocked

 R can claim
coins

 S can claim
 coins

• Link: A reference ref such that only a transaction
with the same reference can spend the q coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to

submit a tx satisfying R (at the point of validation).
(τ-,τ+), ref, R

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Sum Protocol II

· · ·

x
1

x
11

x
12

· · · x
1n

x
2

x
21

x
22

· · · x
2n

......
......

xn xn1 xn2 · · · xnn

y
1

y
2

· · · yn y =

nX

i=1

yi

…

P1 P2 Pn

P1

P2

Pn

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Sum Protocol II

· · ·

x
1

x
11

x
12

· · · x
1n

x
2

x
21

x
22

· · · x
2n

......
......

xn xn1 xn2 · · · xnn

y
1

y
2

· · · yn y =

nX

i=1

yi

…

P1 P2 Pn

P1

P2

Pn

x1 =
nM

j=1

x1j

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Sum Protocol II

· · ·

x
1

x
11

x
12

· · · x
1n

x
2

x
21

x
22

· · · x
2n

......
......

xn xn1 xn2 · · · xnn

y
1

y
2

· · · yn y =

nX

i=1

yi

…

P1 P2 Pn

P1

P2

Pn

x1 =
nM

j=1

x1j

…

x2 =
nM

j=1

x2j

xn =
nM

j=1

xnj

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Sum Protocol II

· · ·

x
1

x
11

x
12

· · · x
1n

x
2

x
21

x
22

· · · x
2n

......
......

xn xn1 xn2 · · · xnn

y
1

y
2

· · · yn y =

nX

i=1

yi

…

P1 P2 Pn

P1

P2

Pn

x1 =
nM

j=1

x1j

…

x2 =
nM

j=1

x2j

xn =
nM

j=1

xnj

y =
nM

i=1

yi

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Example: A Summation protocol

Secure (private)
 against arbitrary
 many colluding
 parties

Sum Protocol II

· · ·

x
1

x
11

x
12

· · · x
1n

x
2

x
21

x
22

· · · x
2n

......
......

xn xn1 xn2 · · · xnn

y
1

y
2

· · · yn y =

nX

i=1

yi

…

P1 P2 Pn

P1

P2

Pn

x1 =
nM

j=1

x1j

…

x2 =
nM

j=1

x2j

xn =
nM

j=1

xnj

y =
nM

i=1

yi

SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Assuming a public key infrastructure (commitments/encryption/
signatures) there exists a semi-honest SFE protocol π for every
function which

• Uses only public communication
• Tolerates arbitrary many semi-honest parties
• Terminates in constant rounds

 Compile a semi-honest SFE protocol π into (malicious) secure

SFE with Robust Compen. : Construction
Tools 3/3 : The GMW Compiler

 Compile a semi-honest SFE protocol π into (malicious) secure

SFE with Robust Compen. : Construction

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 … ρπ + 1:
Execute π round-by-round so that
in each round every party proves
(in ZK) that he follows π

Tools 3/3 : The GMW Compiler

 Compile a semi-honest SFE protocol π into (malicious) secure

SFE with Robust Compen. : Construction

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 … ρπ + 1:
Execute π round-by-round so that
in each round every party proves
(in ZK) that he follows π

Security (with abort)

• Privacy: The parties see
the following:
- Setup
- Commitments
- Messages from π

• Correctness:
- If ZKPs succeed then

the parties are indeed
following π

- Else abort

Tools 3/3 : The GMW Compiler

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 … ρπ + 1:
Execute π round-by-round so that
in each round every party proves
(in ZK) that he follows π

GMW

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Every Pi commits to its input

Rounds 2 … ρπ + 1:
Execute π round-by-round so that
in each round every party proves
(in ZK) that he follows π

GMW
Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that he follows π

GMW’:

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

GMW’:

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pi makes n·ρπ + 1
special 1-coin transactions B(i,j,r):

• Pj can spend coin in round r
• ref needs to have the protocol ID
• R is true if the transaction which

spends the coin includes a valid
r-round message for Pj

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pi makes n·ρπ + 1
special 1-coin transactions B(i,j,r):

• Pj can spend coin in round r
• ref needs to have the protocol ID
• R is true if the transaction which

spends the coin includes a valid
r-round message for Pj

Rounds 3 … ρπ + 2: Execute
GMW(π) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(π).

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

Validate(.) executes the code of an
extra party without inputs in GMW
and rejects if abort.

Round 1: Every party Pi makes n·ρπ + 1
special 1-coin transactions B(i,j,r):

• Pj can spend coin in round r
• ref needs to have the protocol ID
• R is true if the transaction which

spends the coin includes a valid
r-round message for Pj

Rounds 3 … ρπ + 2: Execute
GMW(π) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(π).

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Security with Robust Compensation.
• Case 1: The adversary correctly makes all the

“committing” transactions in Round 1
• If no party cheats then every party claims from

each of the other parties as many coins as he
deposited by simply executing his protocol.

• If some party Pj cheats, then every party still
claims all his coins as above + all the committed
coins that Pj cannot spend as he did not execute
his protocol.

SFE with Robust Compen. : Construction
Security with Robust Compensation.
• Case 2: Some corrupted party does not make

(consistent) transactions in Round 1
• e.g. aborts or commits to a different setup.

SFE with Robust Compen. : Construction
Security with Robust Compensation.
• Case 2: Some corrupted party does not make

(consistent) transactions in Round 1
• e.g. aborts or commits to a different setup.

… seems to have similar issue as before …

SFE with Robust Compen. : Construction
Security with Robust Compensation.
• Case 2: Some corrupted party does not make

(consistent) transactions in Round 1
• e.g. aborts or commits to a different setup.

… seems to have similar issue as before …

• Solution: The validation predicate can be changed as:
• Separates the parties into “islands” of consistent

setups (depending on their Round-1 transactions).
• For each island I⊆[n]: Compute the function among

parties in I (with all other parties’ input being 0)

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pi makes n·ρπ + 1
special 1-coin transactions B(i,j,r):

• Pj can spend coin in round r
• ref needs to have the protocol ID
• R is true if the transaction which

spends the coin includes a valid
r-round message for Pj

Rounds 2 … ρπ + 2: Execute
GMW(π) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(π).

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Idea: Use “GMW”-like compiler on the Ledger

Round 0:
Setup generation (+ commitments
to randomness)

Round 1:
Do nothing

Round 2:
Every Pi commits to its input and
broadcasts his view of the public
setup.

Rounds 3 … ρπ + 2:
Execute π round-by-round so that
in each round every party proves
(in NIZK) that the follows π

Round 0:
Setup generation (+ commitments to
randomness)

Round 1: Every party Pi makes n·ρπ + 1
special 1-coin transactions B(i,j,r):

• Pj can spend coin in round r
• ref needs to have the protocol ID
• R is true if the transaction which

spends the coin includes a valid
r-round message for Pj

Rounds 2 … ρπ + 2: Execute
GMW(π) round-by-round so that in
each round r every party spends all
its round r referenced coins by a
transaction which includes the round
r message in GMW(π).

GMW’: SFE with Robust Compensation

SFE with Robust Compen. : Construction
Security with Robust Compensation.
• Case 2: Some corrupted party does not make

(consistent) transaction in Round 1
• e.g. aborts or commits to a different setup.

• All honest parties are on the same island
• Corrupted parties can choose to play with the honest parties or

participate in a computation independent of honest inputs.

… seems to have similar issue as before …

• Solution: The validation predicate can be changed as:
• Separates the parties into “islands” of consistent

setups (depending on their Round-1 transactions).
• For each island I⊆[n]: Compute the function among

parties in I (with all other parties’ input being 0)

Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

???

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

??? Should capture
all properties we

want from π

W(F f)

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

??? Should capture
all properties we

want from π

Benefits of this Modeling

Benefits of this Modeling

• A single abstraction of the functionality offered by
cryptocurrencies
- Advanced transactions correspond to an advanced

validation predicate

• A definition of fair compensation as a (UC) functionality-
wrapper forces us to be precise
- An explicit formation of synchrony with a single global

clock (capturing what protocols assume in reality).

• Compatibility with standard (formal) analysis of crypto
protocols

• A (universal) composition theorem

W(F f)

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

???

W(F f)

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

???

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

SFE with Robust Compen. : Functionality

Idea: The predicates are used to filter the adversarial
influence
• QInit(State,Walleti) = True iff the Walleti has enough

funds

• QDlvr(State, Walleti) = True iff it is OK to deliver to Pi

• E.g., if Pi does not “owe” money

• QAbrt(State, Walleti) = True iff it is OK for Pi to abort
• E.g., if Pi has an increase of funds

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

“r”

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

“r”

Create (PKi, SKi) = Gen(r,1k)

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

“r”

Create (PKi, SKi) = Gen(r,1k)PKi

Gledger

F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

“r”

Create (PKi, SKi) = Gen(r,1k)PKi

Gledger

m,F m
F f

W(F f)

SFE with Robust Compen. : Functionality
A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

Phase 1: Resource Allocation

Pi
“allocate”

“allocate Pi”

“r”

Create (PKi, SKi) = Gen(r,1k)PKi

Gledger

m,F m
m for Simm F f

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi

m,F m
m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m
m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m

getState

m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m

getStateState

m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m

getStateState

x
QInit(State,PKi)

YesNo

m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m

getStateState

x
QInit(State,PKi)

YesNo
x

m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

F f

Phase 2: Input

Pi
“Input, x”

m,F m

getStateState

x
QInit(State,PKi)

YesNo
x

m for Simm

Gledger

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

W(F f)

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger W(F f)

m for Simm
m,F m

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger W(F f)

m for Simm
m,F m

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

Ready for FairDeliver
+

Corrupt outputs

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger W(F f)

m for Simm
m,F m

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

Ready for FairDeliver
+

Corrupt outputs

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger

Deliver/Abort Pi

W(F f)

m for Simm
m,F m

getStateState

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

Ready for FairDeliver
+

Corrupt outputs

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger

Deliver/Abort Pi

W(F f)

m for Simm
m,F m

getStateState

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

Ready for FairDeliver
+

Corrupt outputs

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger

Deliver/Abort Pi

W(F f)

The adversary can deliver to Pi only if
QDlvr(State, Pi)=True

The adversary can make Pi abort only if
QAbrt(State, Pi)=True

m for Simm
m,F m

getStateState

SFE with Robust Compen. : Functionality

Phase 3: OutputPi

Deliver, (f(x1),…,f(xn))

Ready for FairDeliver
+

Corrupt outputs

A wrapper functionality WP1,…,Pn(F f) with three predicates:
• (QInit, QDlvr, QAbrt)

F f

Gledger

Deliver/Abort Pi

W(F f)

The adversary can deliver to Pi only if
QDlvr(State, Pi)=True

The adversary can make Pi abort only if
QAbrt(State, Pi)=True

m for Simm
m,F m

? f(xi)/⊥

W(F f)

A Formal Model: GUC

P1 P2 Pn…

Ideal
World F f

P1 P2 Pn…

Real
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

???

Take Away Message and Open Directions

Take Away Message and Open Directions
• Bitcoin opens new directions for cryptographic models

- Adding a reward/punishment mechanism restricts the
set of likely attacks

- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)

• The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:

compatibility)

Take Away Message and Open Directions
• Bitcoin opens new directions for cryptographic models

- Adding a reward/punishment mechanism restricts the
set of likely attacks

- Limitations of crypto should be reconsidered
(Impossibilities/Efficiencies)

• The choice of the model makes a difference when
suggesting a solution
- Safe strategy: Rectify the cryptographic model (Bonus:

compatibility)

Future directions
• A game theoretic analysis might allow us to improve

existing results
• What more can we get from Bitcoin?
• The right model for exploring its rational aspects?

