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“Backbone” [GarayKiayiasLeonardos15]

The Public Transaction Ledger

The core security goal of Bitcoin is to ensure that all 
parties establish a common and irreversible view                

of the sequence of transactions 

This goal can be captured as an ideal   
Transaction-Ledger Functionality

“If we had a trusted third party instead of the Bitcoin 
network, how would we expect it to behave?” 

“What is exactly the problem that bitcoin solves?” 
                                                             AK, 2016
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Validate(.)

GetState

“State”

State
St||x

(Submit, x)“State” x

NoYesx

Gledger 

• In reality: Not a Bulletin Board
• Inputs (transactions) are filtered
• The order in which  transactions in 

“State” are inserted might be adversarial 
… but not too adversarial  
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wish to compute a function f(x1,…,xn) securely
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Secure Function Evaluation (SFE)

F f

P1 P2 Pn

x1 x2 xn
f(x)̅

f(x)̅ f(x)̅=y
…

Ideal World

P1 P2 Pn…

Real World
≈

π1(x1) π2(x2) πn(xn)

???
Protocol π is secure if for every adversary: 
• (privacy) Whatever the adversary learns he could compute by himself
• (correctness) Honest (uncorrupted) parties learn their correct outputs
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F f

P1 P2 Pn

y⊥⊥

Fair SFE is impossible against corrupted majorities [Cleve86]

Security against 
corrupted majorities  

Security with  
abort =

✘ (Unfair)

Discounted 
security
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Tools 1/2 : Authenticated Additive Secret  
   Sharing

PnP1

x=x1⊕ … ⊕ xn , (sk,vk)←KeyGen

[x]1 = x1,Sigsk(x1),vk [x]n = xn,Sigsk(xn),vk

• No n-1 parties have info on x 
• Together all n parties can recover x
• No party can lie about its share

• Only x might be reconstructed!

… 
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Tools 2/2 : Claim and Refund Transactions
S transfers q coins to R such that

time τ
 R can claim 

coins
  S can claim 
      coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to 

submit a tx satisfying R (at the point of validation).

• Time restriction τ

• Supported by Bitcoin scripting language
• Captured by Validate(.)
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Abort at this point is fair

1. Run SFE with unfair abort to compute  n-out-of-n 
authenticated sharing [y] of y=f(x1,…,xn)
• E.g., Every Pi receives share [y]i such that 
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2. Use the following reconstruction idea:

2.1. Every Pi  transfers 1 bitcoin to every Pj with the 
restriction: 
• Pj can claim (spend) this coin in round ρij if it submits to 

the ledger his valid share (and signature) by round ρij 
• if Pj has not claimed this coin by the end of round ρij, 

then the coin is “refunded” to Pi (i.e., after round ρij, Pi  
can spend this coin himself). 

2.2. Proceed in rounds in which the parties claim the coins 
from other parties by announcing their shares (and 
signatures)

Protocol Idea for computing y=f(x1,…,xn)
 [BentovKumaresan14,15]
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Security (SFE with fair compensation): Follow the money …

• If the adversary announces all his shares then every party:
• Sends n coins in phase two (one to each party)
• Claims back n coins in phase three (one from each party)

• If a corrupted party Pj does not announce his share then 
every party 
• Sends n coins in phase two (one to each party)
• Claims back

• n coins in phase three for announcing his shares
• the coin that it had sent to Pj

Protocol Idea for computing y=f(x1,…,xn)
 [BentovKumaresan14,15]
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Time
Protocol Starts
Sharing is Output, Committed transactionsSeconds

1 hour Start reclaiming transactions

“several” = 
• [BentovKumaresan14] linear in players (n) 
• [BentovKumaresan15] constant 

What if the adversary aborts before 
making the committed transactions?

This can be confirmed here … 

… and reclaimed here  … 

O(n)
times

=
O(n)
hours 

till 
output

output or compensation is settled several hours
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(what is derived by) its inputs then every honest party 
should learn the output

SFE with fair compensation:  If the adversary learns 
any information beyond (what is derived by) its inputs 
then every honest party should learn the output or get 
compensated

robust

How can we get robustness?

(fast …)
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time τ- τ+
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  S can claim 
      coins

• Link: A reference ref such that only a transaction 
with the same reference can spend the q coins

• A predicate (relation) R(state,buffer,tx):
• In order to spend the coins the receiver needs to 

submit a tx satisfying R (at the point of validation).
(τ-,τ+), ref, R

• Time restriction (τ-, τ+)

Tools 1/3 : Special Transaction
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SFE with Robust Compen. : Construction
Tools 2/3 : Semi-honest SFE
An SFE protocol which is secure when parties follow their instructions

Assuming a public key infrastructure (commitments/encryption/
signatures) there exists a semi-honest SFE protocol π for every 
function which 

• Uses only public communication
• Tolerates arbitrary many semi-honest parties
• Terminates in constant rounds
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SFE with Robust Compen. : Construction

Round 0: 
Setup generation (+ commitments 
to randomness)

Round 1: 
Every Pi commits to its input 

Rounds 2 … ρπ + 1: 
Execute π round-by-round so that 
in each round every party proves 
(in ZK) that he follows π

Security (with abort)

• Privacy: The parties see 
the following: 
- Setup
- Commitments
- Messages from π

• Correctness:
- If ZKPs succeed then 

the parties are indeed 
following π 

- Else abort

Tools 3/3 : The GMW Compiler
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SFE with Robust Compen. : Construction
Security with Robust Compensation. 
• Case 1: The adversary correctly makes all the 

“committing” transactions in Round 1
• If no party cheats then every party claims from 

each of the other parties as many coins as he 
deposited by simply executing his protocol. 

• If some party Pj cheats, then every party still 
claims all his coins as above + all the committed 
coins that Pj cannot spend as he did not execute 
his protocol.
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SFE with Robust Compen. : Construction
Security with Robust Compensation. 
• Case 2: Some corrupted party does not make 

(consistent) transaction in Round 1
• e.g. aborts or commits to a different setup. 

• All honest parties are on the same island
• Corrupted parties can choose to play with the honest parties or  

participate in a computation independent of honest inputs. 

… seems to have similar issue as before … 

• Solution:  The validation predicate can be changed as:
• Separates the parties into “islands” of consistent 

setups (depending on their Round-1 transactions).
• For each island I⊆[n]: Compute the function among 

parties in I (with all other parties’ input being 0) 



Crypto On Blockchain

Outline

• The functionality offered by blockchains

• Leveraging Security Loss with Coins 
… in Secure Function Evaluation (SFE)

• A formal cryptographic (UC) model for security proofs 



A Formal Model: GUC

P1 P2 Pn…

Ideal 
World F f

P1 P2 Pn…

Real 
World

≈

π1(x1) π2(x2) πn(xn)



A Formal Model: GUC

P1 P2 Pn…

Ideal 
World F f

P1 P2 Pn…

Real 
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger



A Formal Model: GUC

P1 P2 Pn…

Ideal 
World F f

P1 P2 Pn…

Real 
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

???



A Formal Model: GUC

P1 P2 Pn…

Ideal 
World F f

P1 P2 Pn…

Real 
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

??? Should capture 
all properties we 

want from π



W(F f)

A Formal Model: GUC

P1 P2 Pn…

Ideal 
World F f

P1 P2 Pn…

Real 
World

≈

π1(x1) π2(x2) πn(xn)

GLedger

GLedger

??? Should capture 
all properties we 

want from π



Benefits of this Modeling 



Benefits of this Modeling 

• A single abstraction of the functionality offered by 
cryptocurrencies 
- Advanced transactions correspond to an advanced 

validation predicate 

• A definition of fair compensation as a (UC) functionality-
wrapper forces us to be precise
- An explicit formation of synchrony with a single global 

clock (capturing what protocols assume in reality).

• Compatibility with standard (formal) analysis of crypto 
protocols 

• A (universal) composition theorem
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SFE with Robust Compen. : Functionality

Idea: The predicates are used to filter the adversarial 
influence
• QInit(State,Walleti) = True iff  the Walleti has enough 

funds

• QDlvr(State, Walleti) = True iff it is OK to deliver to Pi

• E.g., if Pi does not “owe” money 

• QAbrt(State, Walleti) = True iff it is OK for Pi to abort
• E.g., if Pi has an increase of funds

A wrapper functionality W(F f) with three predicates:
• (QInit, QDlvr, QAbrt)
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- Safe strategy: Rectify the cryptographic model (Bonus: 
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Future directions
• A game theoretic analysis might allow us to improve 

existing results 
• What more can we get from Bitcoin?
• The right model for exploring its rational aspects? 


