
Decentralization as a
Privacy-Enhancing Technology

George Danezis, University College London

With Marios Isaakidis (UCL), Carmela Troncoso (IMDEA), and Harry Halpin (INRIA/LEAP)

The De/Centralization pendulum

Mainframes The PC

The Cloud Peer-to-peer

‘Services’ Bitcoin

Centralized authority Decentralized authority

The InternetAOL / CDNs

Computing Industry Zeitgeist

What do we mean by centralized authority?

Decentralized: Infrastructure vs. authority

The Google Cloud

• Very large distributed system.

• Paired Datacentres.

• Chubby: uses paxos for
distributed locks.

• BigTable: eventually consistent
bulk storage.

• Map-reduce: indexing.

• Sharding to serve users.

Gnutella

• Many peers storing local files &
flood fill search.

• Peers connect to other peers to
ask for files.

• Peers download from others.

• Super-peers can optimize some
routing.

A critical view of centralized authority

System
Under
Central

Authority

Example: webmail,

web-server, search

engine, online storage.

Users / Clients

Problems Solutions?

Secure cloud?
What if the authority

goes rogue?

No Privacy?

No Integrity?

No availability?

Coercion

Integrity fix:

zero-knowledge

Privacy fix:

Homomorphic Enc.

Availability and Coercion?

Very expensive

(3.2GHz vs. 1Hz-100Hz)

Social networks

Two events with profound significance …

Napster (2000)

• Distributed peers could share
music.

• Through a centralized indexing
service.

• Legal challenge in 2000 (RIAA).

• Ordered to keep track of
activities to enforce copyright.

• Closes service in 2001.

… bittorrent (2001)

E-Gold (2008)

• Online currency backed in grams
of gold (launched 1996)

• Central entity kept balances &
gold. Instant trades.

• Constant uncertainty about
status of “money transmitter”

• 2006-08 DoJ categorises as
transmitter and prosecutes.

• Service closes down.

… bitcoin (2008-09)

The (naïve) promises of decentralized authority

Can a decentralized authority architecture be a game changer?

• Privacy: no single entity -> no mass surveillance?
• Think: SNS / Prism.

• Integrity: no single entity -> no mass control? No government?

• Availability: no single entity -> no suppression.

How it all started?

Ross Anderson. "The eternity service." In Proceedings of PRAGOCRYPT, vol. 96, pp.
242-252. 1996.

“ I had been alarmed by the Scientologists' success at closing down
the penet remailer in Finland; the modern era only started once the printing press
enabled seditious thoughts to be spread too widely to ban. […] So I invented the
Eternity Service as a means of putting electronic documents beyond the censor's
grasp. ”

http://www.december.com/cmc/mag/1997/sep/helmers.html

The hype last time …

• February 2001
• Internet,

• Napster,

• Commons,

• SETI@Home,

• Jabber,

• mixmaster,

• gnutella,

• freenet,

• redrover,

• publius,

• free haven, …

What have we learned since?

The wave of decentralization following Snowden (2013)

Dangerous waters:

(1) A narrative about a past golden age.

(2) A theory about an external factor that let to decay &

moral corruption.

(3) A theory of social change based on the removal of

said external factor.

“palingenetic myth” (Roger Griffin, 1991)

LEAP

What have we learned in the past 15-20 years?

• How are systems decentralized?
• How decentralization supports privacy?
• What we gain from decentralizing?
• What may be lost with respect to privacy/security when

decentralizing?
• What implicit centralized assumptions remain?

A focus on privacy, with reflections on blockchains.
Main lesson:
• Decentralization is a whole design space.
• No golden age. Maybe a golden future.

Decentralization: How?
The many faces of decentralization

Users & infrastructure tensions

• Common: multiple sources of authority!

• There is no infrastructure:
• Difficult to imagine: telecommunications / WAN

• Samba / LAN protocols.

• Direct IM (historical skype voice channel).

• Users are the infrastructure:
• They use each other as infrastructure.

• Example: Freenet, Gnutella (-> supernodes)
Distributed Hash Tables (Kademia)

• Infrastructure is distinct from users:
• Examples:

Bitcoin separation between “miners” and other users.
Tor separation between relays and users.

LAN / Radio

Issue: churn, reliability

Centralizing

Tendencies

How do nodes related to each other?

• Distributed:
• Well defined entities relating to each other.
• Well established distributed system with Byzantine failures.
• Examples: MPC, Distributed Storage, Tor relays.

• Federated:
• Multiple sources of authority representing users.
• Example: Email / SMTP / Jabber

• Peer-to-peer:
• Open world, no central “admission control”
• Examples: Bitcoin Miners, Torrent swarms

• Social-based:
• Relations of trust between nodes.
• Theoretical systems: XXX

• Auditing / Accountability relation:
• Doer / Verifier distinction
• Examples: Electronic voting systems, certificate transparency, bitcoin miners

Closed World

Admission?

Imbalance

of power

Sybil attacks

Where do these come from?

Social engineering.

Can verify only so far:

completeness, availability.

Structure of the network

Technical, Distributed Systems,
interaction:

• Mesh:
• All talk to all – O(n2) channels, run out of

sockets.

• Gossip:
• Sparse connectivity, opportunistic gossip
• No efficient routing – broadcast only
• Example: Bitcoin mining, Gnutella, CT

• Structured:
• Nodes assume positions to facilitate

efficient routing. Coordination?
• Example: Infrastructure less Torrents, Tor

HSDir.

• Restricted (Stratified, cascaded):
• Specialization. Eg. Tor routers (Exit,

Middle, Guard)

• Scale Free / Social:
• Do not talk to strangers
• Examples: Darknet mode Freenet; MCON

– covertness

• Hierarchical:
• Contradiction in terms? Maybe not.
• Spanning tree protocols: AS, BGP, SCION

architecture.

• Content centric:
• Structure interactions around content.
• Examples: CCN, …

Diversity: real systems combine the
above for different parts of their
infrastructure:

• Tor routers (stratified)
• Tor HSDir (structured)
• Tor Directories (Mesh)

Case studies: The tor anonymity system

Tor Relays

Client

Service

Directory Authorities

Info

Dir

Path

HSDir

Developers

4 Decentralized systems!

(consensus / integrity)

(stratified - privacy)

(DHT – both)

(Auditability?)

Reflections on Tor

• Complexity

• Relation between dev, authorities and relays:
• Development:

• centralized, but extremely verifiable.

• Decentralized Deployment.

• Directory authorities:
• More-centralized / less open.

• High-integrity with verifiability

• Relays:
• More-decentralized / more open: privacy

• Clients / Services:
• Autonomy to pick relays / HSDir.

Decentralization: what Privacy?
What privacy properties are supported.

Privacy of content

• At the heart of traditional cryptography.
• Can we realize a functionality without TTPs?

• Threshold encryption / Decryption:
• All systems based on threshold assumptions are about distributed

architectures.

• Eg. Distributed decryption of ballots in electronic election.

• Distributed storage:
• Original Eternity Service, Free Haven, Tahoe-LAFS, IPFS

• Encrypt blocks and store them (availability).

• Joint decryption / retrieval.

• Private computations / SMPC
• “Multi-party” assumes parties do not collude: distributed authority.

• Often presented as peers: example 2PC.

Anonymity & meta-data privacy

• Who is talking to whom?
• Intrinsic: need a group of other

users – decent. Authority.

• Eg. mix network, Tor, crowds,
Tarzan, election mix nets.

• Hide user action:
• Information theoretic Private

Information retrieval (PIR):
assume a threshold of honest
servers.

• Censorship circumvention:
• Use a decentralized system for

escaping censorship.

• The original reason! Eg. Eternity,

• Covertness:
• Traffic obfuscation against

shaping (bittorrent)

• Unlinkability of operations
• Example: z.cash – remove link

between payer and payee in
cryptocurrencies.

• Address book / social network
privacy

• Examples: DP5 – a private
presence systems.

• Xbook: private social networking.

• Plausible deniability:
• Tangler: no block can be ascribed

to a specific file.

Remove central “trust”

Can we use transparency & decentralize checking to turn trusted third parties
into untrusted ones? Two approaches:

• Substitute TTPs with decentralized protocol:
Eg. Distributed anon. credentials – the central bank is substituted by a joint
oblivious functionality.

• Allow TTP but force transparency:
Logging in certificate transparency. Include all observed certs (from central
certification authorities) into the logs, and check for conflicts.

The problem of software development:

• Is the actual software not inevitably a centralized point of failure?

• Apply the transparency approach: Eg. Tor – all development is done in public
repositories; deterministic builds ensure all can verify the genuine binary;
authority to upgrade is in hand of operators.

• Same for bitcoin – choice to deploy is up to miners.

What decentralization buys you?
Architectural advantages of decentralization

Reduce costs, spare resources & deployment

• Spare capacity & spare infrastructure:
• Early peer-to-peer: spare CPU (SETI@home) & strorage (Freenet)

• Current resources that are difficult to centralize: Network location diversity:
eg. Bridges for bypassing censorship.

• When security is associated with diversity decentralization is an obligatory
option (legal diversity, network diversity).

• Leveraging existing trust networks:
• Through decentralization designers can use local “trust” assumptions.

• Example: Drac anonymity network design – each user connects with friends
to relay anonymously information.

• Decentralized Social Networks rely on this heavily.

Flexible “trust” models

• Distributed Trust:
• All threshold protocols require decentralized architectures.

• Distributed key generation, public randomness, decryption, signing.

• Ensures that a subset going rogue does not compromise the security
properties of the system.

• Distributed Trusted Computing Base – no single entity can compromise it.

• No natural single authority:
• What is there is genuinely no single authority that can run the system?

• Key examples: access control in “distributed” systems.

• Eg. TAOS and SDSI access control logic rely on attributes from different
authorities to decide access to resources.

Resisting formidable adversaries

• Separate deployment from operations:
• Since operators are separate from developers, pressure on developers should be

ineffective to violate the properties of the system.
• In case of suppression open source ensures forks will survive.
• Examples: Tor and Bitcoin.

• Censorship resistance:
• Pressure on a small number of entities cannot entirely eradicate the use of the

system.

• Covertness:
• Wide distribution of infrastructure (only some architectures) ensure no single

points of suppression exist. Peer architectures (Membership concealing networks)
hide participation.

• Survivability:
• Peer-to-peer Botnet architectures: difficult to take down / and even detect the

bot master. Is that a decentralized architecture?

What you lose when
decentralizing?
“Hell is the others”

Patterns of fragile decentralization: Privacy

User

Secret “s”

s

s

s

s

If any part of the decentralized system is corrupt you lose privacy.

Safe: split across all nodes (ok if any honest).

Adversary

NodesDistribute secret

to all nodes.

Patterns of fragile decentralization: Integrity

User

Need “f(p)”

p

p

p

v

If any part of the decentralized system is corrupt you lose Integrity.

Safe: all nodes agree on the value sought.

Adversary

Nodes

F(v)

Believe information

from any node.

Patterns of fragile decentralization: Availability

User

Need all of
c1, c2, c3, v

c1

c2

c3

v

If any part of the decentralized system is unavailable you lose service.

Safe: rely on small agile subset of nodes.

Morality: Achieving Privacy, Integrity and Availability cannot be done

purely architecturally and will require some heavy crypto-magic™.

Adversary

NodesRequire all / many

others to operate.

Increased attack surface

• Internal adversaries:
• Other nodes may be controlled by the adversary.
• Traditional security architecture, “crunchy on the outside – soft on the inside” is not

applicable.
• Extremely demanding security engineering problem!
• Examples: routing security in distributed hash tables (DHTs).

• Content interception &Traffic analysis:
• Actions mediated though others -> more opportunities for content interception and meta-

data inference. Eg. Tor exit nodes.

• Attacks using inconsistent views
• No single authority may mean no authoritative state!
• A lot of work has to be done to ensure consistency.
• Example attack: different views of relays in an anonymity system.

• Privacy loss.
• Others are infrastructure – they see your secrets.
• Example: miners in bitcoin see all transactions – and so is everyone else.
• Participation in the system may be difficult to conceal.

• Denial of service
• Others may decide to stop playing with you.

Cumbersome management

• Routing difficulties:
• Pure overlays make routing uncertain.
• This is also a problem for the Internet (BGP attacks)
• Adversaries may poison names, paths and stop relaying.

• Performance loss
• “The price of anarchy” – all act under partial information & local optimums.

• Difficult attack prevention
• Centralized security measures cannot be deployed.
• 2 key examples: (1) spam detection and prevention (2) anomaly detection.
• Result: only properties that can be implemented using strong crypto survive.

• Challenging collaborative computation
• Private & correct Joint computation harder than routing & storage.
• Example: private statistics in the Tor network. Bitcoin: only pseudonymity.

• Network diversity:
• Vastly different nodes in terms of power, bandwidth, availability, and willingness

to help others.

Lack of accountability & reputation

• Information integrity.
• Information may not be reliable, since other entities must be incentivised to be

truthful. (Not just inconsistent but plain wrong)
• Turns all problems in distributed systems into an economic mechanism design:

elicit truthful participation.
• Makes security engineering a superset of game theory and economics!

• Poor incentives & economics:
• Lack of de-facto long term identities undermine repeated game equilibriums.
• Example: The mojo nation storage protocol: hyperinflation, and collapse.

• Sybil attacks:
• It is not trivial to tell whether others are “real”, or a mere multi-instanciation of a

single adversary.
• What is real anyway? The case of the flash mob.
• Solutions: proof-of-work (Bitcoin), piggy-backing on centralized admission control

(Tor – the IP network), or social authentication (advogato).
• Deeper question: what makes a genuine constituent?

The Centralized bits in
decentralized designs
Looking under the rug of dencentralized systems

Directories & state are (more) centralized

• Node / peer finding / indexing:
• Classic example: Napster – files are on user machines but information routing,

indexing and search done centrally. Fail!
• Tor: Distributed directory infrastructure lists all relays & attributes. However

centralized enough to allow blacklisting by firewalls.

• Path selection & reputation:
• Global “reputation” scores …
• Entities that configure /select / optimize paths.

• Question: is a lottery a decentralized state decision system?
• Imagine that at any time we elect a dictator and their state becomes the state we

all accept.
• Of course subject to some checks: integrity.
• However: completeness may be difficult to check.
• … the bitcoin “consensus” backbone.

Other centralized bits & assumptions

• Authentication / authorization.
• Let’s use a single-sign on! Admission control for Sybil prevention. Nope.

• Abuse prevention
• Lets create a global score for everyone! I know spam when I see it. Hm.

• Payment system
• Decentralized systems are decentralized, for everything else there is mastercard.
• Bitcoin to the rescue!

• Collective computations are centralized.
• Let’s face it: Multi-party computation is just too hard.
• Remember: is picking one at random really decentralized?

• End-systems?
• Pattern: What is we use the end user machine? User control.
• Is that really decentralized? Only if endpoints can be effectively protected.

• Incentives are correct
• Welcome to mechanism design, your second PhD.

Towards Rabid Decentralization
Decentralization will not happen by itself or naturally

Decentralization: No silver bullet

• Good will, slogans and demands are not enough.
• Neither is return to a lost golden age.

• What do you need to build good secure decentralized systems?
• Deep knowledge of distributed systems. They will by definition be

distributed.

• Deep knowledge of cryptography: necessary to achieve simultaneously
privacy, integrity and availability.

• Mechanism design, game theory and sociology – otherwise selfish or
otherwise motivated actors will get you.

• How many people in the world exist that combine those?
• How many of those work for Google?

• Compare with the number that know how to build a simple centralized web
service.

• The fundamental economic problem of building & maintaining such
systems.

Vulnerability to one or many authorities

• Unsafe design pattern for one security property, is a good solution for
the others.

• Examples:
• Bitcoin: high-integrity – at the cost of a public ledger, ie. little privacy.

• Tor routers: high-privacy at the cost of no available or correct collective
statistics.

• Zerocash: combines high-privacy & high-integrity “efficiently” – uses
cryptographic assumptions (SNARKS) that will make you cry.

Open philosophical question:

Is being vulnerable to a “random” subset of decentralized authorities
better than being vulnerable to one for either integrity or privacy?

Examples: decentralized social networks (diaspora).

Inefficient decentralization
= no much decentralization

• A problematic dynamic: high-integrity requires a majority to honestly
participate in decisions.

• Example: bitcoin – all miners need to hear of all transactions / blocks, all
need to verify new blocks.

• The bigger the decentralized network, the more work each peer
needs to do.

• Growing the network reduces its capacity to do work!

• Result: require enough separate authorities to ensure diversity, but
as few as possible to ensure efficiency.

• Conjecture: is that the reason mining pools are concentrate bitcoin mining?

• What that that say about natural centralizing tendencies in decentralized
systems / and markets?

• Politics: Separation of powers (usually only 3!)

Decentralized institutions to support
decentralized systems

• The promise of Bitcoin: algorithmic monetary policy, etc.

• More generic trend in decentralized systems:

“They want to replace western civilization with a bunch of crappy
Python scripts” – Dr Halpin.

• More likely: Co-evolution of decentralized systems for privacy and
accounting & social institutions embedding privacy and transparency.

• What will these look like?

• Ideas from 2001: Commons, Wikipedia, …

• Governance in free software projects: Tor & Bitcoin …

In conclusion …

• How to make decentralized systems scale up: the more participants
the more capacity and value?

• How to integrate strong integrity and privacy crypto protections
despite the wide distribution and decentralization?

• How to co-design institutions, incentives, usability and governance in
vast decentralized systems?

Join Sarah Meiklejohn and myself at University College London:

3 post-docs on systems, crypto and usability of distributed ledgers.

